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Abstract
Ultrashort pulsed laser-induced periodic surface structures (LIPSS) can be generated on different kinds of materials, which 
are widely utilized for modifying surface properties such as wettability, adhesion, and tribological, as well as optical per-
formances. Previous studies have focused mainly on one-dimensional LIPSS (i.e., line structure) generation. In this study, a 
picosecond pulsed laser was used to irradiate stainless-steel surfaces for generating two-dimensional LIPSS, namely nanodot 
structures, by cross-scanning the laser beam for a different number of times. The obtained nanodot structures were found to 
be super hydrophilic just after laser irradiation, but turned to be hydrophobic after exposure in air for a few days. By cross-
scanning the laser beam for the same number of times, local LIPSS rewriting was realized. This study showed the possibility 
of improving the homogeneity of the surface properties of steel materials through laser-induced nanodot structuring.
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1  Introduction

Formation of laser-induced periodic surface structures 
(LIPSS) has been confirmed on various kinds of materials 
such as metals, semiconductors, and dielectrics by irradi-
ating an ultrashort pulse laser near the ablation threshold 
[1–6]. The period of LIPSS is shorter than the incident laser 
wavelength [7], and the direction of LIPSS is determined by 
the laser polarization [8–10]. One of the possible LIPSS for-
mation mechanisms is the interference of laser and the sur-
face plasmon polariton (SPP) excited by the laser [11, 12]. 
An irradiating laser generates an electric charge distribu-
tion on the surface and induces SPP. The laser-SPP interfer-
ence modulates the energy deposition. As a result, LIPSS is 
formed through ablation under the modulated energy deposi-
tion. Another possible mechanism is laser-induced material 
self-organization [5, 13]. After electrons are emitted from 
a surface during laser irradiation, the surface will become 
unstable and self-organization occurs. As a result, LIPSS is 
assembled via surface relaxation. The main mechanism for 

LIPSS formation on a specific material depends on its mate-
rial property and the atmosphere or media in which laser 
irradiation is done [2, 14].

Although the physics of LIPSS formation is still a matter 
of controversy, LIPSS has been utilized by many research-
ers to alter surface wettability [15, 16], tribological prop-
erty [17], optical performances [18, 19], and mold-releasing 
ability in plastic forming [2]. It is reported that laser wave-
length [7, 20], polarization [8], fluence [11], number of 
pulses [21–23], incident angle [24, 25], and pulse repetition 
[26] affect the period of LIPSS. Furthermore, the morphol-
ogy of LIPSS is dependent on the surrounding media [14]. 
However, to date, only one-dimensional LIPSS (parallel line 
structure) has been generated and there is little literature on 
two- or three-dimensional LIPSS formation.

One-dimensional LIPSS is highly directional, and thus 
may cause anisotropy in the surface property. For example, 
in plastic molding applications [2], line-structure LIPSS may 
cause nonhomogeneous plastic flow near the surface of the 
mold, and in turn, lead to residual stresses and even form 
errors on the molded components. From this meaning, two-
dimensional LIPSS or locally modified surface line-structure 
becomes necessary, which is helpful in improving the uni-
formity of interfacial plastic flows.

In this study, we aim at generating two-dimensional 
LIPSS, namely nanodot structures, and other novel surface 
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patterns on stainless-steel surfaces by picosecond pulsed 
laser irradiation. The laser is irradiated on the workpiece 
surface for a certain number of times by crossing the beam 
scan directions perpendicularly. The historical effect of 
LIPSS formation is investigated under various conditions. 
The wettability change of the resulting surfaces is evaluated 
to verify the effectiveness of the proposed method in surface 
functionalization.

2 � Experimental Method

In this study, a picosecond fiber laser PFLA-1030TP (Opto-
quest, Japan) was used for experiments. The configuration 
of the experimental system is shown in Fig. 1. The laser 
beam passes through a multi-frequency acousto-optic modu-
lator (AOM), an attenuator and a beam expander, and then 
reflected by a mirror toward the sample surface. An objective 
lens was used to focus the laser beam, and a CCD camera 
was equipped for laser spot observation. A three-axis stage 
was used to move the workpiece in different directions.

The laser wavelength was 1030 nm and the pulse width 
was 50 ps at a pulse frequency of 100 kHz. The laser beam 
was Gaussian and the spot size was 6–7 μm with a focal 
length of 20 mm. No defocus was used in this study. Flu-
ence was set to 0.10 and 0.15 J/cm2 in the experiments. The 
scanning speed was changed in the range of 1–40 mm/s. The 
scan overlap was set to 2 and 6 μm, respectively. The number 
of scans (N), which was defined as the number that the laser 
was irradiated on the same area, was changed in the range 
of 1–100.

Figure 2 shows a schematic of cross-scanning pattern of 
the laser beam. First, the laser was irradiated by scanning 
the beam along the horizontal direction in Fig. 2 (indicated 
as first irradiation) for a number of times (N1). After that, 
the workpiece was rotated 90°, and the laser was irradiated 
according to the same scheme (indicated as second irradia-
tion) for another number of times (N2) to investigate how the 

two irradiations affect each other. The polarization of the 
laser beam for the two scan directions is E1 and E2, respec-
tively, as indicated in the figure.

Stainless steel was used as the workpiece material. The 
mass percent of each material composition is C: 0.38%, Si: 
0.9%, Mn: 0.5%, Cr: 13.6%, and V: 0.3%. A scanning elec-
tron microscope (SEM) (INSPECT S50 produced by FEI 
Company, USA) was used to observe the obtained surface 
structures. An atomic force microscope (AFM) SPM-3 
(Hitachi, Japan) was used to measure the profile of the 
LIPSS structure. A laser microscope, VK-9700 produced by 
KEYENCE CORPORATION, Japan, was used to measure 
the surface roughness of the samples.

After the irradiating laser, the wettability of the surface 
was investigated. The contact angle of water was measured 
after cleaning the sample with ethanol. Then, the sample was 
kept in the air for 7 days, and the contact angle was meas-
ured again. The droplet of water on the sample was observed 
with a contact angle meter, Simage Entry 5 produced by 
Excimer Inc., Japan.

3 � Results and Discussion

3.1 � Effect of Repetitive Irradiation on Depth 
of LIPSS

To examine the effect of repetitive irradiation on the depth 
change of LIPSS, the laser was irradiated along the same 
direction by changing the number of scans (N) from 1 to 
100. Figure 3 presents SEM images of the surfaces irradiated 
at a fluence of 0.10 J/cm2 and scanning speed of 40 mm/s 
by changing N are shown in. When N = 1 (Fig. 3a), fine 
nanoscale line structure parallel to the laser polarization 
is observed. This nanostructure is high spatial frequency 
LIPSS (HSFL) with a period considerably shorter than the 
laser wavelength [25]. When N = 3 (Fig. 3b), in addition to Fig. 1   Schematic of the experimental setup
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Fig. 2   Schematic of cross-scanning pattern of laser beam
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HSFL, a few fine grooves perpendicular to the laser polariza-
tion are observed, which is presumably the low spatial fre-
quency LIPSS (LSFL) [27]. At N = 5 (Fig. 3c), the formation 
of LSFL becomes dominant in most of the area, while the 
area with HSFL formation is decreased. When N = 10, 50, 
and 100 (Fig. 3d–f), LSFL is formed on the entire surface 
without HSFL.

Normally, HSFL is formed at lower fluence than LSFL 
[25]. In this study, it is demonstrated that even at low flu-
ence, a transition from HSFL to LSFL occurs by increasing 
the number of scans N. This transition maybe caused by 
surface roughening. The irradiated surface becomes rougher 
by the formation of HSFL, thus the absorption rate of light is 
increased [10]. Therefore, the energy absorbed in the surface 
is increased, and LSFL is formed by repetitive irradiations.

The SEM images of the surfaces irradiated at higher flu-
ence, 0.15 J/cm2, and the same scanning speed (40 mm/s) 
with changing the number of scans N are shown in Fig. 4. 
Unlike the case of 0.10 J/cm2, HSFL is not observed in 
Fig. 4. In contrast, LSFL is formed on all the surfaces, 
even at N = 1. As N increases, the depth of the LIPSS also 
increases. This result indicates that it is necessary to use 
sufficiently high laser fluence to obtain LSFL by a single 
laser scan.

3.2 � Cross‑Scanning for Local Rewriting of LIPSS

In this section, the laser was cross-scanned in perpendicu-
lar directions as shown in Fig. 2, and the possibility local 
rewriting of LIPSS morphology was investigated. For both 
the first and the second irradiations, single scan was per-
formed (N1 = N2 = 1) at fluence of 0.15 J/cm2 and a scan-
ning speed of 40 mm/s. In the first irradiation, the scan 
pitch was set to 2 μm, while in the second irradiation, the 
scan pitch was set to 2 and 6 μm, respectively.

Figure 5 presents the SEM images of the irradiated 
surfaces. When the scan pitch in the second irradiation is 
2 μm, the LIPSS generated in the first irradiation is rewrit-
ten and LIPSS perpendicular to the polarization of the 
second irradiation is newly created (Fig. 5a, b). When the 
scan pitch is 6 μm, however, the LIPSS formed in the first 
irradiation is partially rewritten. As a result, two kinds of 
LIPSS locally perpendicular to each other are generated on 
the same surface (Fig. 5c, d). Furthermore, as seen from 
Fig. 5b and d, in the boundary region, the two kinds of 
LIPSS are partially connected with each other.

Fig. 3   SEM images of surfaces irradiated at fluence of 0.10 J/cm2 and 
N of a 1, b 3, c 5, d 10, e 50, f 100

Fig. 4   SEM images of surfaces irradiated at fluence of 0.15 J/cm2 and 
N of a 1, b 3, c 5, d 10, e 50, f 100
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3.3 � Cross Scanning for Generating Nanodot 
Structure

To find conditions for generating nanodot structures, the 
effects of number of scans N1 and N2 on the morphology 
of LIPSS in cross-scan irradiation tests were investigated. 
For both the first and second irradiations, the laser was irra-
diated at fluence of 0.15 J/cm2, and a scanning speed of 
40 mm/s and a scan pitch of 2 μm. The number of scans 
N1 was changed from 1 to 5, and N2 was set to 1, respec-
tively. Figure 6 presents the SEM images of the irradiated 
surfaces. When N1 = N2 = 1, the LIPSS generated in the first 
irradiation is completely rewritten by the new LIPSS gen-
erated in the second irradiation. When N1 = 3 and N2 = 1, 
the LIPSS obtained in the first irradiation (vertical line) is 
partially rewritten by the new LIPSS (horizontal line) in 
the second irradiation, and some vertical lines still remain. 
However, when N1 = 5 and N2 = 1, the LIPSS formed in the Fig. 5   SEM images of surfaces irradiated with crossing scans: a scan 

pitch 2 μm; b close-up of a; c scan pitch 6 μm; d close-up of c 

Fig. 6   SEM images of the 
surfaces irradiated at fluence 
0.15 J/cm2, scanning speed 
40 mm/s, and scan pitch 2 μm 
with various number of scans 
for each irradiation
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first irradiation is changed to a dot structure after the second 
irradiation.

To investigate the formation mechanism of the dot struc-
ture, the LIPSS depth was measured using an AFM. The 
AFM images of the LIPSS formed in the first irradiation at 
different number of scans (N1 = 1, 5) are shown in Fig. 7. 
The cross-sectional profiles of the LIPSS taken from the 
AFM image are also shown in the figure. It is clear that the 
depth of LIPSS increases as N1 increases. When N1 = 1, the 
average depth of LIPSS is 119 nm; while the depth becomes 
235 nm at N1 = 5.

From this result, it may be said that the depth of LIPSS 
generated in the first irradiation affects the morphology of 
LIPSS in the second irradiation. That is to say, there is a 

historical effect in LIPSS formation, as shown in Fig. 8. 
When N1 = 1, the LIPSS generated in the first irradiation 
is shallow, and can be completely restructured by the new 
LIPSS in the second irradiation. As a result, LIPSS perpen-
dicular to the polarization of the second irradiation remains. 
From this result, it is presumable that the dominant mech-
anism of LIPSS formation for stainless steel is the laser-
induced reorganization/reconstruction (without removal) 
of the near surface layer of the material, rather than the 
modulated ablation (with removal) induced by interference 
of laser and the SPP.

When N1 = 5, however, the LIPSS formed in the first irra-
diation is so deep that it remains even after the second irra-
diation. As a result of orthogonal overlapping effect of the 

Fig. 7   AFM images of LIPSS 
formed in the first irradiation 
when a N1 = 1, b N1 = 5. The 
cross-sectional profiles on the 
right side were taken along the 
dotted lines in the AFM images 
at the left side
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Fig. 8   Schematic of laser-
induced reorganization/recon-
struction of top layer of material 
surface (N1 = 1) and historical 
effect of LIPSS in deep region 
and mechanism of nanodot 
structure formation (N1 = 5)
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two kinds of LIPSS, the dot structure is created. This result 
indicates that the laser-induced reorganization/reconstruc-
tion phenomenon only occurs to the top layer of the material 
surface while the deeper region is less affected, i.e., there is 
a kind of historical effect. To achieve the nanodot structures, 
the number of laser scans in the first irradiation should be 
always more than that in the second irradiation.

3.4 � Surface Wettability Change

The wettability of laser-irradiated surfaces with LIPSS and 
dot structure was investigated and compared with that of 
unirradiated surfaces. The SEM images of the sample sur-
faces and the corresponding results of contact angle meas-
urements after laser irradiation as well as after exposure in 
the air for 7 days are shown in Fig. 9. The contact angle of 
water droplet is 81° on the unirradiated surface, 20° on the 
surface with LIPSS, and 10° on the surface with nanodot 
structure. Super hydrophilicity is confirmed for the laser-
irradiated surfaces with nanodot structures. This result 
strongly demonstrates that LIPSS-based nanostructuring is 

effective for improving surface properties, such as wettabil-
ity, of stainless-steel surfaces.

However, it should be pointed out that the contact angle is 
greatly changed after exposing the laser-irradiated samples 
in the air for 7 days (Fig. 9g–i). The contact angle of a water 
droplet on the nanostructured surface is greatly increased 
and it becomes larger than that of the unirradiated surface. 
A possible reason for this phenomenon is that an extremely 
thin layer of organic substance is adsorbed on the laser-irra-
diated metal surface after exposing in the air, and the surface 
becomes hydrophilic [28].

4 � Conclusions

A stainless-steel surface was processed by a picosecond 
pulsed laser under various conditions. When increasing 
the number of laser scans, a transition from HSFL to LSFL 
occurred, and the depth of LIPSS increased. For single 
laser scans, the LIPSS that formed in the previous irra-
diation could be rewritten to LIPSS perpendicular to the 
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Fig. 9   SEM images of sample surfaces: a unirradiated, b with LIPSS, c with nanodot structure. d, e, f are optical images of water droplets on 
surfaces (a, b, c); g, h, i are results after exposure in the air for 7 days
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polarization of the subsequent irradiation. This enables local 
alteration of LIPSS directions. In contrast, deep LIPSS gen-
erated by multiple laser scans exhibited a kind of histori-
cal effect, i.e., LIPSS generated by the previous irradiation 
could not be rewritten, but remained after the subsequent 
irradiations. By applying this LIPSS formation mechanism 
to cross-scanning of the laser beam, nanodot structure was 
successfully created. Super hydrophilicity was confirmed for 
the irradiated surfaces with nanodot structures. The findings 
from this study demonstrate that LIPSS-based nanostructur-
ing is an effective approach to improve or locally modify the 
surface properties of stainless-steel surfaces.
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