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Featured Application: Functional surfaces of zirconia with antibacterial properties.

Abstract: Femtosecond pulsed laser irradiation was performed to investigate the feasibility and
fundamental characteristics of embedding silver nanoparticles onto zirconia ceramic surfaces. By
irradiating laser, nanopores were fabricated on the surface of the yttria-stabilized zirconia (YSZ)
substrate, and silver nanoparticles were infiltrated and immobilized into the pores using a commercial
nano-silver dispersion solution. Numerous nanopores embedded with silver nanoparticles were
successfully obtained on the YSZ surface while keeping the grains’ shapes unchanged by controlling
laser parameters. Optimizing laser fluence and scanning speed near the ablation threshold made it
possible to remove only the excess dispersant that remained on the surface while keeping silver in
the pores and without causing machining of the surface of the YSZ substrate. In addition, about 60%
embedding in the nanopores was achieved. It was found that the shorter pulse width was suitable to
avoid evaporating both dispersant and silver. Cross-sectional observation revealed that the silver
nanoparticles were agglomerated to form clumps and were embedded without a gap at the bottom
of the pores at a depth of about 600 nm. After laser irradiation, no significant laser-induced phase
change was observed in the YSZ substrate, indicating that there was no in-process thermal damage to
the bulk. These findings demonstrated the possibility of adding a metal nanoparticle to the zirconia
surface by using only a laser process without damaging the properties of the base material during the
process. New applications of zirconia, such as the generation of functional surfaces with antibacterial
properties, are expected.

Keywords: nanopore; yttria-stabilized zirconia; femtosecond pulsed laser; silver; phase transformation;
ceramic material

1. Introduction

Zirconia (ZrO2) is an important ceramic material with excellent heat resistance, hard-
ness, chemical stability, and unique aesthetic effects. In particular, polycrystalline tetragonal
yttria-stabilized zirconia (YSZ) shows high strength and high fracture toughness at room
temperature thanks to the effect of the stress-induced phase transformation mechanism [1].
Due to its superior properties, YSZ has been used in many applications such as dental im-
plants, biomaterial components, and mechanical components, and has increasing demand
in various fields. To improve the functionality of these YSZ products and to develop new
applications, there is a need for higher surface functionality.

For the surface functionalization, there are various approaches. Surface micro/nanoscale
structures can change and enhance many surface functionalities such as wettability [2],
anti-fouling [3], biocompatibility [4,5], and frictional properties [6]. It is also effective to
immobilize various materials on the surface that are different from the base material. By
loading various materials, such as metal nanoparticles, new functions can be obtained, such
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as antimicrobial and optical properties, which are limited in expression by treatment of the
base material alone. For example, by selecting metal nanoparticles into silver and attaching
them to graphene oxide [7] or cellulose nanofibers [8], it is possible to create new materials
with antibacterial properties [9]. Surface treatment methods include coating, plating, and
glazing, which cover the entire surface. However, depending on the application, these
methods may change the surface topography by adding a new layer on the substrate or
may change the surface functionality and appearance of the substrate itself by covering
the substrate. Therefore, in order to take advantage of the surface characteristics of the
substrate itself, it is effective to use a method in which the desired material is loaded locally
only on a part of the substrate. For example, if a nanostructure is created on the surface and
the desired materials are placed in it, it is expected that the materials can be fixed in the
structure without covering the entire substrate surface. Zachman et al. [10] proposed the
nanopore delivery system, in which nanopore arrays are made on fused silica substrates,
effectively loading peptides by adsorption.

However, although zirconia is excellent as a support due to its chemical stability, it
is difficult to process nanostructures on the zirconia surface. Lithography [3] and anodic
oxidation [11] are commonly used to fabricate nanostructure, but these methods are not suit-
able for zirconia ceramics because there are materials that are suitable for each processing
method. Since zirconia is a hard and brittle material, it is difficult to mechanically process
the surface directly. In addition, zirconia is resistant to conventional etching in the first
place because of its chemical resistance [12]. Sriamporn et al. [13] created a micro/nanoscale
porous surface by using a high-temperature solution for hydrofluoric acid (HF), which
is inherently difficult to etch. However, tetragonal-to-monoclinic phase transformation
was induced on the treated surface. Since YSZ mainly consists of tetragonal phases under
atmospheric temperature and pressure conditions [14], this phase transformation changes
the material properties of the substrate and may lead to a reduction in the strength and
lifetime of the ceramics [15]. Sandblasting is a conventional process for creating rough
surfaces, and these micro/nanoscale surface structures act as anchors to improve adhesion
to other materials. However, it is difficult to control the processing location, and a deeper
hole structure is considered suitable for support. In previous studies, an increase in the
monoclinic ratio on the zirconia surface after sandblasting was reported, and damage to
the material was a problem [16,17]. In another example, Bakkar et al. [18] processed YSZ
with pore channels of several tens of nanometers in diameter by the freeze-casting process.
It is possible to obtain sintered zirconia with nanostructures by using various sintering
methods, but these methods can make the entire bulk porous.

Laser processing is one of the effective methods for creating nanostructures [19].
Many techniques have been studied to fabricate nanostructures, such as nanoholes and
nanogrooves on the scale of several hundred nanometers or less, including: processing
high aspect ratio nanoholes in SiO2 substrates using femtosecond pulsed lasers [20–22];
fabrication of nanoholes, periodic nanostructures, and nanodot structures in metals using
femto/picosecond pulsed lasers [23,24]; and drilling submicron holes in polymers using
femtosecond pulsed lasers at extreme ultraviolet (XUV) wavelengths [25]. There are many
reports on new nanostructure-processing methods and patterning that exceed the diffrac-
tion limit of laser light; however, to our knowledge, there have been no sufficient studies
on polycrystalline zirconia for nanoholes, except for the formation of nanogrooves [26–28].
Therefore, in our previous study, we proposed a new method to fabricate nanoscale pores
in YSZ. By irradiating the femtosecond pulsed laser, generation of nanopores in the crystal
grains of the YSZ top layer succeeded [29]. A large number of pores can be generated on
the surface with a single laser pulse irradiation without causing damage to the bulk by
using this technique. These nanopores could be effectively used to load various materials
on the YSZ surface and impart new functionalities.

Therefore, in this study, a novel method was proposed to embed material into nanopores
formed in YSZ using laser irradiation. Figure 1 shows the structure of the target YSZ sample.
First, a femtosecond pulsed laser was irradiated onto the polycrystalline YSZ substrate
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to form nanopores within the surface crystal grains. Using the pose as an anchor, we at-
tempted to create a functional material by locally filling and fixing any material within
the nanopores. This nanopore structure is a new structure that we have realized, and the
material has never been supported in the pores. If this method is realized, it can be expected
to provide a new approach to surface functionalization for zirconia, which is difficult to
microfabricate using conventional methods and suffers from damage during processing.
Silver nanoparticles were selected as the embedding material. YSZ has excellent chemical
stability and does not interact with silver, and silver has antibacterial properties [9], so
YSZ has advantages in its use in biomaterials and daily necessities of people. For example,
when implanted into the body as a biomaterial, YSZ’s biocompatibility will allow it to bond
well with bone and tissue, and the antibacterial and bactericidal effects of silver inhibit
bacterial growth, increasing the stability of YSZ products. Since the base material is YSZ,
excessive elution of metal ions and base material deterioration can be suppressed compared
to metal base materials. In addition, the health risks associated with the absorption of
silver ions are extremely low [30], and by introducing it into the pores, it can be expected to
prevent desorption from the sample surface and provide a sustained effect. Furthermore,
by generating pores at arbitrary locations on the surface, it becomes possible to selectively
control the location where the material is supported. Material delivery systems have been
actively studied in recent years [31], and if this technology, which takes advantage of the
biocompatibility of YSZ itself, can be applied not only to silver but also to other materials,
it may have further potential for application.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 23 
 

YSZ sample. First, a femtosecond pulsed laser was irradiated onto the polycrystalline YSZ 
substrate to form nanopores within the surface crystal grains. Using the pose as an anchor, 
we attempted to create a functional material by locally filling and fixing any material 
within the nanopores. This nanopore structure is a new structure that we have realized, 
and the material has never been supported in the pores. If this method is realized, it can 
be expected to provide a new approach to surface functionalization for zirconia, which is 
difficult to microfabricate using conventional methods and suffers from damage during 
processing. Silver nanoparticles were selected as the embedding material. YSZ has excel-
lent chemical stability and does not interact with silver, and silver has antibacterial prop-
erties [9], so YSZ has advantages in its use in biomaterials and daily necessities of people. 
For example, when implanted into the body as a biomaterial, YSZ’s biocompatibility will 
allow it to bond well with bone and tissue, and the antibacterial and bactericidal effects of 
silver inhibit bacterial growth, increasing the stability of YSZ products. Since the base ma-
terial is YSZ, excessive elution of metal ions and base material deterioration can be sup-
pressed compared to metal base materials. In addition, the health risks associated with 
the absorption of silver ions are extremely low [30], and by introducing it into the pores, 
it can be expected to prevent desorption from the sample surface and provide a sustained 
effect. Furthermore, by generating pores at arbitrary locations on the surface, it becomes 
possible to selectively control the location where the material is supported. Material de-
livery systems have been actively studied in recent years [31], and if this technology, 
which takes advantage of the biocompatibility of YSZ itself, can be applied not only to 
silver but also to other materials, it may have further potential for application. 

 
Figure 1. Surface nanopores with embedded silver nanoparticles. 

Thus, in this study, the feasibility of metal nanoparticle loading into nanopores in 
zirconia surfaces by femtosecond pulsed laser irradiation, which has never been reported 
before, and the fundamental characteristics of the process were investigated. The laser 
irradiation conditions were varied, and the effects on the surface morphologies were clar-
ified. The percentage of metal nanoparticles embedded in the pores and the structural 
change and processing damage of the zirconia substrate were also evaluated. The objec-
tive of this work is to create zirconia with nanopores embedding different material than 
the bulk using a laser irradiation process only. This study suggests a new approach for 
YSZ in various fields of industry by enhancing surface functionality. If a YSZ sample with 
silver nanoparticles embedded within the pores is realized, various applications can be 
expected based on the antibacterial properties, unique optical properties, high electrical 
and thermal conductivity, and nanomedicine delivery function of silver. Using this 
method, which uses a femtosecond pulsed laser that can minimize material damage, it is 
possible to obtain the effect of silver only on the surface while maintaining material 
strength, making it particularly suitable for YSZ, which is used as a biomaterial. Further-
more, by applying this method to other nanoparticle materials, it is expected that it will 
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Thus, in this study, the feasibility of metal nanoparticle loading into nanopores in
zirconia surfaces by femtosecond pulsed laser irradiation, which has never been reported
before, and the fundamental characteristics of the process were investigated. The laser
irradiation conditions were varied, and the effects on the surface morphologies were
clarified. The percentage of metal nanoparticles embedded in the pores and the structural
change and processing damage of the zirconia substrate were also evaluated. The objective
of this work is to create zirconia with nanopores embedding different material than the
bulk using a laser irradiation process only. This study suggests a new approach for YSZ
in various fields of industry by enhancing surface functionality. If a YSZ sample with
silver nanoparticles embedded within the pores is realized, various applications can be
expected based on the antibacterial properties, unique optical properties, high electrical
and thermal conductivity, and nanomedicine delivery function of silver. Using this method,
which uses a femtosecond pulsed laser that can minimize material damage, it is possible
to obtain the effect of silver only on the surface while maintaining material strength,
making it particularly suitable for YSZ, which is used as a biomaterial. Furthermore, by
applying this method to other nanoparticle materials, it is expected that it will be possible
to embed any material at any location on the surface and create YSZ surfaces with various
desired functions.
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2. Materials and Methods

Fully sintered YSZ polycrystalline doped with 3 mol% Y2O3 (Tosoh Corp., Tokyo, Japan)
was used as the workpiece. Samples of rectangular plates with a thickness of 3 mm were pre-
pared. The sample surface was sintered at 1500 ◦C and thermally etched at 1350 ◦C without
polishing. The average grain size was 600 nm, and surface roughness was 309 ± 18 nm Ra.
The entire workpiece was cleaned with acetone and ethanol before the experiment.

The Yb:KGW femtosecond pulsed laser (PHAROS-08-600-PP, Light Conversion, UAB,
Vilnius, Lithuania) was used in this study. The laser parameters are summarized in Table 1.
The laser wavelength was 1028 nm and the repetition frequency was 100 kHz. The laser spot
diameter was 16 µm at the focal point. The laser beam had a Gaussian energy distribution,
and laser beam scanning was controlled by a galvanometer scanner system in the X and Y
directions. The beam was focused onto the workpiece placed on an adjustable z-axis stage
through an fθ lens.

Table 1. Experimental conditions.

Parameters (a)
Nanopore Generation

(b)
Fixation of Nanoparticles

(c)
Fixation of Nanoparticles

Laser medium Yb:KGW Yb:KGW Nd:YVO4
Wavelength: λ [nm] 1028 1028 532

Spot size [µm] 16 16 85
Pulse width 256 fs 256 fs, 10 ps 26 ns

Repetition frequency: f [kHz] 100 100 100
Scanning speed: v [mm/s] 1000 10~500 53~1593

Laser power: E [mW] 450 60~140 1.7 × 103~4.0 × 103

Laser fluence: F [J/cm2] 2.2 0.3~0.7 0.3~0.7
Number of scans: N 1 1 1

Atmosphere Air Air Air

The schematics of the experimental process are shown in Figure 2. Firstly, a laser was
irradiated on the entire sample surface to generate nanopores by using laser parameters
summarized in Table 1 (a). Then, nano-silver dispersion liquid (Japan Ion Corp., Tokyo, Japan)
was dropped onto the surface. The workpiece was dried in a vacuum desiccator for 24 h to
completely remove moisture from the surface to avoid hydrothermal degradation caused
by contact between zirconia and water molecules [32]. To embed silver nanoparticles in
the nanopores and remove excessive deposits simultaneously, the laser beam was scanned
again on the workpiece. To investigate the nanoparticle embedding characteristics, the
laser beam was scanned for various laser fluences, scanning speeds, and pulse widths
summarized in Table 1 (b). To remove the excess dried film of the dispersion attached
to the outside of the pore without processing the original YSZ surface, the laser fluence
was set extremely smaller than the ablation threshold of zirconia to selectively remove
only the target material from the surface. For the comparison, the Nd:YVO4 nanosecond
pulsed laser (Super Pulse 532-30, Inngu Laser Co., Ltd., Zhengzhou, China) and electric
furnace (High-performance muffle furnace HPM-1N, AS One Corp., Osaka, Japan) were
used to remove the excess dried film. The nanosecond pulsed laser was irradiated with
various laser parameters summarized in Table 1 (c). Since the beam diameter was different
from the femtosecond pulsed laser, the scanning speed was adjusted so that the pulse
overlap rate was the same. On the other hand, the workpiece was heated in an electric
furnace at 450 ◦C for 30 min in air. All experiments in this study were performed under
atmospheric conditions.
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Figure 2. Schematics of experimental procedure: (a) nanopore fabrication on entire YSZ surface by
irradiating femtosecond pulsed laser; (b) nano-silver dispersion liquid is dropped onto the surface
and dried in a vacuum desiccator; (c) laser irradiation is used to embed nanoparticles and remove
excess dried film; (d) SEM images of irradiated surface in process (a); (e) overview of YSZ sample.

To observe silver nanoparticles in nano-silver dispersion, a field-emission transmission
electron microscopy (FE-TEM, Tecnai G2, FEI Co., Hillsboro, OR, USA) was used. The
nano-silver dispersion was dropped onto a glass plate and completely dried in a desiccator
by removing the water. The remaining dried film was then shaved off from the glass
plate with a razor blade and finely ground in a mortar for TEM observation. To mea-
sure the size distribution of silver nanoparticles, the diameters of four hundred particles
were measured from a TEM image using image analysis software ImageJ (version 1.53;
U.S. National Institutes of Health, Bethesda, MD, USA).

After nanopore generation, a zeta potential analyzer (ELS-Z2PT, Otsuka Electronics
Co., Ltd., Tokyo, Japan) was used to measure the zeta potential of nano-silver dispersion and
the YSZ surface, and pH was measured with a pH meter (pH METER D-51, HORIBA Ltd.,
Osaka, Japan). After the irradiating laser to remove the excessively dried film, the surface
morphologies of the irradiated sample were observed by a field-emission scanning electron
microscope (FE-SEM, Inspect F50, FEI Co., Hillsboro, OR, USA). An energy-dispersive
X-ray spectroscopy (EDX, EDAX Inc., Pleasanton, CA, USA) was used to analyze the
elemental distribution. For the cross-sectional investigation of pores, a focused ion beam
system (FIB, Quanta 3D 200i, FEI Co., Hillsboro, OR, USA) was used to cut the sample. An
FE-SEM (ZEISS GeminiSEM 500, Carl Zeiss AG, Oberkochen, Germany) was also used to
observe the cross-section of the pore. Elemental distribution under the irradiated surface
was investigated by glow discharge optical emission spectroscopy (GDOES, GD-Profiler2,
HORIBA Ltd., Osaka, Japan). Moreover, the material phase structure was evaluated by a
laser micro-Raman spectrometer (InVia Raman Microscope, Renishaw plc., Kingswood, UK)
with a laser wavelength of 532 nm and a beam diameter of 1 µm.

For the quantitative evaluation, the number of pores with and without embedded
material was counted. Nine SEM images of the same field of view at 40,000× were prepared
for each irradiation condition. The ratio of the number of pores with implantation to the
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total number of pores in the field of view was defined as the “pore-embedded ratio”, and
the average value for nine images was calculated.

3. Results and Discussion
3.1. Characteristics of Nano-Silver Dispersion

The basics of nano-silver dispersion used in this study were investigated as shown
in Figure 3. After removing the water from the dispersion, a large matrix made of
polyvinylpyrrolidone (PVP) polymer which was water soluble and originally included as a
dispersant in the nano-silver dispersion was observed, and countless nanoparticles were
contained in the PVP as shown in Figure 3a. According to EDX analysis, these nanoparticles
were indeed silver (Figure 3b,c). TEM images showed that the silver nanoparticles were
spherical and varied in diameter from a few nm to about 10 nm (Figure 3d). In addition,
individual nanoparticles were dispersed and did not aggregate to form large clumps that
would prevent entry into the pore. It is thought that the silver nanoparticles originally
existed in a dispersed state in the nano-silver dispersion liquid without aggregation due to
the effect of PVP and that the removal of water from the dispersion fixed the nanoparticles
in a dispersed state in the dried PVP film. The particle size distribution chart showed that
the mode was 3.5 nm and the average diameter was 4.6 ± 2.0 nm (Figure 3e). This indicates
that the silver nanoparticles were sufficiently smaller than the nanopores, which were
approximately 100 nm in diameter. Therefore, the silver nanoparticles are fully capable of
entering the nanopore.
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It is necessary to investigate whether the nanoparticles adsorb on the substrate after
dropping the dispersion on the YSZ surface. The driving force for the adsorption of
nanoparticles on the YSZ substrate could be the Coulomb force due to the surface charge of
the YSZ and silver nanoparticles. Figure 4 shows the zeta potential of each sample. At the
expected dilution ratio, the pH of the dispersion was about 5.0~5.8 (Figure 4a). In this pH
range, the YSZ surface after nanopore generation showed a slightly positive zeta potential,
and nano-silver dispersion showed a negative zeta potential (Figure 4b). The polarity of
the surface charge of silver nanoparticles in the dispersant and YSZ surface was opposite,
indicating that the nanoparticles were in a desirable state to adsorb onto the sample.
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3.2. Surface Morphology
3.2.1. Effect of Laser Fluence and Scanning Speed

After the nano-silver dispersion was applied to the pore-processed surface, the process-
ing characteristics of the second laser irradiation (Figure 2c) were evaluated. To investigate
the effect of the laser conditions, line irradiation was conducted. The laser beam was
scanned a single time at a pulse width of 256 fs with different laser fluences and scanning
speeds. Figure 5 shows the SEM images of the irradiated surface at a scanning speed of
10 mm/s with various laser fluences. From low magnification images (Figure 5(a1–c1)),
the dried dispersion film was completely removed at the laser-scanned area and the YSZ
surface with pre-processed nanopores was exposed. At 0.4 J/cm2 and 0.5 J/cm2, only dried
film was removed from the surface; however, by increasing laser fluence to 0.7 J/cm2, the
YSZ substrate was also machined and the surface with nanopores was partially peeled off.
In general, the ablation threshold for YSZ is larger than 0.7 J/cm2, but it is thought that
the roughening of the surface due to nanopore formation would cause processing even at
smaller fluences. Therefore, the surface tended to be more removed in the pore-generated
area than in the unprocessed area.

From high-magnification images, it was clear that many nanopores kept their shape
after laser irradiation and were filled with some material at 0.4 J/cm2 (Figure 5(a2)). When
the laser was irradiated at 0.5 J/cm2, periodic structures were partially formed around the
apertures of pores (Figure 5(b2)). At 0.7 J/cm2, the periodic structures formed a larger area,
and the grain surface also had periodic spallation marks (Figure 5(c2)). These structures
were considered to be the laser-induced periodic surface structures (LIPSS) that form by
irradiating ultrashort laser pulses near the ablation threshold [33]. In general, LIPSS are
classified into two types based on their periodicity. LIPSS with a period on the same scale
as the irradiated laser wavelength are low-spatial frequency LIPSS (LSFL), and those with



Appl. Sci. 2023, 13, 13108 8 of 22

a period of less than half of the wavelength are high-spatial frequency LIPSS (HSFL). In
this study, LIPSS were formed perpendicular to the laser polarization direction, and the
periodicity was approximately 100~200 nm, which was much smaller than half of the laser
wavelength (λ/2 = 514 nm). This indicates that the structures were HSFL. In general, LIPSS
have advantages in improving and enhancing surface functionalities such as wettability,
biocompatibility, and wear resistance, and have a wide range of applications [34,35]. Our
previous study also revealed that LIPSS formation enhances the hydrophilicity of the
YSZ surface [26]. However, in this study, the irradiation condition where clear LIPSS
formed (Figure 5c) resulted in the removal of silver and surface layers. Change in pore
diameter irradiated with different fluences was measured, as shown in Table 2. As a result,
there was no change in pore diameter due to changes in laser fluence. It was shown that
surface processing such as LIPSS occurred around the pore as the fluence increased, but it
did not affect the size or shape of the pore itself. According to these results, the material
different from the substrate was successfully embedded only within the pre-made nanopore
by laser process by adjusting irradiation conditions. It was also found that lower laser
fluence can suppress surface damage such as LIPSS formation and removal of the surface
layer of YSZ substrate to retain nanopore shape.
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Figure 5. SEM images of the irradiated surface at a scanning speed of 10 mm/s with varying
laser fluence: (a) 0.4 J/cm2, (b) 0.5 J/cm2, (c) 0.7 J/cm2; (a1–c1) are low-magnification images,
and (a2–c2) are high-magnification images.

Table 2. Pore size on irradiated YSZ surfaces in Figure 5.

Parameters (a) 0.4 J/cm2 (b) 0.5 J/cm2 (c) 0.7 J/cm2

Average pore diameter [nm] 125 ± 21 122 ± 16 128 ± 20

The effect of laser scanning speed was investigated. Figure 6 shows the SEM images
of the irradiated surface at a laser fluence of 0.5 J/cm2 with various scanning speeds. At
low scanning speed, dried film was completely removed at the irradiated area (Figure 6a).
When the scanning speed increased, the removed area also decreased due to the decrease in
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laser pulse overlap (Figure 6b). At high scanning speed, the dried film swelled into a tunnel-
like shape, some top parts partially remained, and some were peeled off (Figure 6c). Under
the swelled film, nanopores with embedded materials were observed. It is considered
that the surface was expanded due to the heating effect of laser irradiation since the dried
film was mainly PVP polymer containing silver nanoparticles. It was reported that when
the resin surface was irradiated by a femtosecond pulsed laser, the resin expanded and
decomposed near the surface, and then a cavity was formed [36]. It has also been reported
that increasing the fluence in laser ablation causes the thermal stress difference between
the substrate and the coating film to be greater than the adhesive force between the two,
causing the coating film to delaminate [37]. Thus, in this study, the film expanded and
decomposed, and the internal pressure between the surface film and the YSZ substrate
increased, which is thought to have caused the top surface of the film to delaminate.
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To investigate the elemental component of the irradiated surface, elemental mapping
by EDX was performed. The sample was prepared by area irradiation with a laser fluence of
0.5 J/cm2, a scanning speed of 200 mm/s, and a scan pitch of 8 µm. Figure 7 shows an SEM
image and elemental map of the nanopores. Many yellow dots indicating silver (Ag) were
observed on the surface corresponding to the area where the pore formed. In addition,
microscale debris adhered around the pores also showed silver and carbon (C). It is con-
sidered that the carbon was derived from the PVP in nano-silver dispersion, indicating
the microscale debris was dried PVP containing silver nanoparticles. By extracting PVP
microscale debris adhering to the YSZ surface from the SEM image after laser irradiation
using image analysis, the PVP removal rate, i.e., the area ratio to the irradiated surface,
was calculated. The PVP debris was found to be only about 1% of the YSZ surface area,
indicating that most of the PVP was removed. To effectively remove residual PVP, the
pitch spacing at which the laser scans is considered to be important. If the pitch spacing
between each irradiated line is too wide, unirradiated areas may occur and PVP may not
be fully removed.

To clarify the positional relationship between the distribution of silver and the nanopores
on the YSZ surface, a distribution map was made by image analysis software, as shown
in Figure 7c. The orange color represents the nanopores extracted from the SEM
image (Figure 7a), and the blue color represents the distribution of silver detected
in Figure 7b. The nanopores were densely distributed in a circular region correspond-
ing to the laser pulse shape. Silver was also distributed corresponding to the pulse shape
where the pores were concentrated, and was almost uniformly distributed within the circu-
lar region. There was almost no silver adhered to the gaps between the pulses where almost
no pores were formed, i.e., the unprocessed area. This suggests that silver is uniformly
distributed in the pore-generated area and that the pores act as anchors to hold the silver.
Hence, according to the above results, it was found that silver nanoparticles were success-
fully embedded and remained in the nanopores after laser irradiation. Furthermore, the
dried PVP film on the irradiated surface outside the nanopores was found to be removed
by the laser.
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3.2.2. Effect of Pulse Width

Thermal effects in the laser process are also considered to be an important factor
in removing excess PVP on the surface and implanting silver nanoparticles in the pore.
To investigate the effect of the pulse width which significantly affects the thermal effect
during the process, line irradiation was performed on the YSZ surface using three different
pulse widths: femtosecond (fs), picosecond (ps), and nanosecond (ns). The scanning speed
was adjusted to become the same pulse overlap rate for each laser. The SEM images of
the irradiated surface at different parameters are shown in Figure 8. When irradiated
with low laser fluence (Figure 8(a1–c1)), there were many embedded nanopores on the
YSZ surface at 256 fs. Materials in the pore were still observed at 10 ps. On the other
hand, they were completely removed after irradiating nanosecond pulses of 26 ns. White-
colored spheres with diameters on the order of hundreds and tens of nanometers were
densely adhered to the surface of the original grains around the pores. When irradiated
with high laser fluence (Figure 8(a2–c2)), LIPSS were formed on the surface, and almost no
embedded materials were in the pores at 256 fs. By increasing pulse width to 10 ps, LIPSS
formation was suppressed and only the aperture of the pore split, keeping materials in the
pore. At 26 ns, the YSZ surface was melted and each grain was difficult to identify. Some
microcracks were also generated along the original grain boundaries. No residue remained
in the pores, but very small particles were attached to the surface.
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To compare differences in PVP response due to thermal effects, a sample was heated in
an electric furnace at 450 ◦C to remove surface deposits instead of using a laser. The heating
temperature was set to slightly exceed the decomposition temperature of the PVP. Figure 9
shows the surface morphology of the sample. Figure 9a shows many spheres attached to
the YSZ surface, and their size seemed quite larger than those observed on the surface
irradiated by a nanosecond pulsed laser (Figure 8c). By the backscattered electron (BSE)
image of Figure 9b, the spheres were detected in a brighter color than the YSZ substrate,
which indicates that it is composed of heavier elements than zirconium, i.e., silver without
PVP. It was found that all of the larger silver spheres were attached to the pore-forming
region but did not penetrate the interior of the pore. The results in Figures 8 and 9 suggest
that laser processing, with a shorter pulse width, is suitable for implantation into the pore,
rather than simply heating the surface.
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Figure 9. YSZ surface after heating in an electric furnace: (a) secondary electron (SE) image,
(b) backscattered electron (BSE) image.
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According to the abovementioned results, the surface morphology of dried nano-silver
dispersion film and YSZ substrate after laser irradiation under different parameters were
summarized. Figure 10 shows parameter maps. The range of the scanning speed in each
graph was unified so that the overlap rate was the same. At 256 fs, the dried film was able to
be removed in a limited range of laser fluence and scanning speeds. There was a tendency
for the laser beam not to affect the surface at a higher scanning speed for each laser fluence,
and the YSZ surface structure changed to LIPSS at a lower speed. The range of conditions
in which film was removed was further reduced by increasing pulse width. Although the
dried film could be removed at longer pulses such as 26 ns, the YSZ surface was damaged.
Therefore, the ultrashort pulse is suitable for this silver nanoparticle-embedded process
proposed in this study.
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Figure 10. Parameter map of dried nano-silver dispersion film and YSZ surface morphology irradi-
ated at the different pulse widths: (a) 256 fs, (b) 10 ps, (c) 26 ns.

3.3. Pore-Embedded Ratio

For quantitative analysis of silver implantation, the pore-embedded ratio of the laser-
irradiated surface with different laser fluences and scanning speeds was evaluated. Figure 11
shows the change in the pore-embedded ratio when irradiated by femtosecond pulsed laser
at 256 fs. A pore-embedded ratio of around 60% was achieved in this study. It was found
that there were different laser fluences for each scanning speed, which showed the best pore-
embedded ratio; for example, 0.3 J/cm2 showed the highest value at 10 mm/s, whereas
0.4 J/cm2 was the highest at 50 mm/s, and 0.5 J/cm2 was the highest at 100 mm/s. It
seems that the highest value for each scanning speed did not significantly differ. Thus, it
was concluded that the combination of both two laser parameters was important.

To understand the change in pore-embedded ratio in more detail, the result of Figure 11
was summarized in a color distribution map. Figure 12 shows the color map overlaid on
the parameter map shown in Figure 10a. It was found that materials were embedded
in nanopores at the laser condition where the dried film was partially peeled off and
where LIPSS were generated. In the parameter range where the dried film was completely
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removed from the surface, a higher pore-embedded ratio was obtained, up to approximately
60%. In the range where LIPSS were observed, the pore-embedded ratio tended to decrease.
Especially when the fluence was increased at low scanning speeds, the embedding rate was
low because the YSZ substrate surface with silver-loaded pores was processed.
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3.4. Cross-Sectional Structures

To investigate the embedded material in the pores in detail, cross-sectional observation
was conducted. Figure 13a shows the backscattered electron (BSE) image of the cross-section
of pores irradiated with a laser fluence of 0.5 J/cm2, a scanning speed of 200 mm/s, a scan
pitch of 8 µm, and a pulse width of 256 fs. There was some clumping inside the pores,
and the material was embedded to the deepest depth in all of the pores. The clumps were
detected in a brighter color than the YSZ substrate, indicating that they may be heavier
elements than zirconium, i.e., silver. To clarify the elemental component, the EDX mapping
of each element is shown in Figure 13b. YSZ substrate consisted of zirconium (Zr) and
yttrium (Y); however, it was not in the area of nanopores. It was found that the pores were
filled with silver (Ag), and silver completely penetrated inside the pore. Outside the pore,
i.e., the YSZ surface, had no bright silver peak, indicating the attached material on the
surface was selectively removed by laser irradiation keeping the silver inside the pore. A
small amount of carbon (C) was detected around the nanopore apertures. On the other
hand, no carbon was observed in the area inside the pore where the clear silver peak was
detected, indicating that the silver and the dispersant, PVP, were completely separated in
the pore. In addition, almost no oxygen was detected inside the pores, and it could not be
determined that the silver clumps were severely oxidized. Moreover, no elements other
than the constituent elements (Zr, O, Ag, and C) were detected in the cross-sections, except
for elements attributed to the Pt coating and the measurement device.
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Elemental distribution in the depth direction of the sample was investigated by GDOES
analysis. The sample was prepared by area irradiation with a laser fluence of 0.5 J/cm2, a
scanning speed of 200 mm/s, a scan pitch of 8 µm, and a pulse width of 256 fs. Figure 14
shows the distribution of each chemical component with depth from the sample sur-
face. After laser treatment, no significant changes with depth from the surface in the
main components of YSZ such as zirconium (Zr), oxygen (O), and yttrium (Y) were
observed (Figure 14a). This is considered to be an effect of ultrashort pulse irradiation.
Femtosecond pulsed laser irradiation is characterized by its ability to suppress thermal
effects on surrounding materials by irradiating high-intensity energy in an extremely short
time. In addition, since the objective of this study was to remove the dried film on the
surface and embed silver nanoparticles, a laser fluence extremely smaller than the ablation
threshold of YSZ was used. Therefore, even though the laser irradiation removed the dried
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film, which has a smaller ablation threshold than YSZ, the surface of the YSZ substrate itself
did not melt. Hence, there is no risk of segregation of certain components such as yttria in
the material, and as a result, the components in the original sample remained unchanged.
After laser treatment, a small amount of carbon (C) was also detected and slightly increased
at depths less than 200 nm, but almost zero in other areas. The amount of carbon on the
top layer was smaller than that found on the sample surface after nanopore fabrication,
where all surface organic materials were completely removed by ablation [29], indicating
that the most of PVP dispersants in the nano-silver dispersion were removed by the laser
treatment, and residual PVP, identified in EDX mapping results (Figures 7 and 13), was
almost negligible. For the detailed analysis, silver (Ag) was extracted from the graph, as
shown in Figure 14b. Silver significantly increased as the surface was approached. It seems
that silver existed at the depth in the range from 600 nm to 800 nm, and this value corre-
sponded well to the grain size of the sample. Our previous study showed that localized
energy absorption within the grains of the top layer of the YSZ results in the formation of
long-elongated nanopores form within the grains. Pore size depends on the zirconia grain
size, and thus the maximum depth of the pore also corresponds to the grain size. Therefore,
the fact that silver was detected in the GDOES analysis to the same depth as the grain
size of the sample indicates that silver has reached the deepest part of the pre-fabricated
nanopores. In addition, the result that the silver peak gradually decreased within the range
of the grain size of the surface grains indicates that silver was present without extreme
bias from the top to the deepest point in the nanopore. This indicates that the silver in the
pore was not removed by laser treatment with appropriate irradiation conditions and that
the pore was filled to the deepest part. The measurements were taken over a wide area,
approximately 40 mm in diameter, of a sample that had pores on the entire surfaces. Hence,
it can be said that in all areas, silver nanoparticles firmly penetrated the bottom of the pores
and still remained after laser treatment.
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Figure 14. GDOES analysis of YSZ surface after embedding silver nanoparticles in the nanopores:
(a) GDOES depth profile for each element, (b) magnified depth profile of Ag.

3.5. Material Phase Analysis

To investigate the thermal damage of YSZ during the laser process, the material phase
before and after laser irradiation was measured. Figure 15 presents the Raman spectra
of the exposed YSZ surface after the removal of the surface dispersion film by various
methods. A sample heated in an electric furnace to remove surface deposits instead of using
a laser showed many characteristic peaks. Large monoclinic (m) peaks appeared between
tetragonal (t) peaks compared to the unirradiated original YSZ surface [38], indicating that
the phase transformation of YSZ from tetragonal to monoclinic phase progressed remark-
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ably during the heating process. When the dried film was removed by laser irradiation,
the monoclinic peaks were not as distinct as those observed on the surface after electric
furnace heating, whether femtosecond, picosecond, or nanosecond pulse widths were used.
This result was not changed by changing the laser fluence of the femtosecond laser pulses.
The samples after the surface treatment all showed a large leftward spectral increase of
around 50 cm−1. In the Raman analysis, when a strongly scattering material is measured,
the low wavenumber side of the spectrum rises due to the effect of laser scattering. In
this study, silver nanoparticles adhered to the surface after laser irradiation and heating
in an electric furnace, which may have affected the spectral measurements. Although this
spectral increase may have hidden the original zirconia peaks, it is clear that no significantly
larger monoclinic peaks appeared compared to the furnace-heated surface.
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Figure 15. Raman spectra of the before and after irradiated surface with different laser parameters,
showing monoclinic (m) and tetragonal (t) peaks.

For quantitative analysis, the monoclinic volume ratio was calculated by the Raman
intensity method [39]. The integrated intensity I of three peaks (147 cm−1, 181 cm−1, and
190 cm−1) from the baseline determined by connecting the minimum points of each peak
was measured, and the monoclinic ratio Vm was calculated by following the equation:

Vm =
Im(181) + Im(190)

2.07 × It(147) + Im(181) + Im(190)
(1)

where the subscripts m and t identify the monoclinic and tetragonal phases, respec-
tively. The monoclinic ratio of the furnace-heated surface was about 36%, while the
other laser-irradiated surfaces had almost zero. On the other hand, our previous study
has shown that the monoclinic ratio of the original YSZ surface was about 3%, and the
pore-processed surface, which is shown as “unirradiated” in Figure 15, was about the
same [29]. In general, the thermal effects during the process such as temperature change
cause a tetragonal–to–monoclinic phase transformation of YSZ, degrading its mechanical
material properties. YSZ has extremely high strength and toughness among ceramic ma-
terials and even zirconia-based ceramic materials due to the stress-induced toughening
mechanism and is applied to products that require high strength and toughness such as
dental materials, biomaterials, and mechanical parts. If the mechanical properties of the
original YSZ are compromised due to a significant increase in the monoclinic phase on
the YSZ surface during processing, the strength of the substrate itself will decrease even
if silver is embedded in the YSZ surface, and the product life will be shortened due to



Appl. Sci. 2023, 13, 13108 17 of 22

damage from cracking. Furthermore, fracture on the surface can easily expose and release
the silver embedded in the pores, which causes the loss functionalizing effect of the silver.
Hence, an additional surface treatment method that prevents the increase of the monoclinic
phase is required. In this study, the formation of silver nanoparticle-embedded pores was
achieved by using laser irradiation at very low laser fluence without causing the significant
phase transformation of the YSZ substrate itself, i.e., without causing any thermal damage
to the bulk.

3.6. Mechanism of Silver Implantation

Based on the aforementioned results, a nanoparticle-embedded process in the nanopore
during laser irradiation was summarized. The mechanism of change in surface morphology
is schematically shown in Figure 16.
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After pore fabrication, the YSZ surface is slightly positively charged. In addition, the
surface becomes hydrophilic as reported in our previous study [29]. Therefore, when a
nano-silver dispersion liquid is dropped, the liquid spreads widely on the surface, and
the negatively charged silver nanoparticles are adsorbed by Coulomb force (Figure 16a).
Since the samples are placed in a vacuum desiccator, it is assumed that the degassing action
will allow the dispersion to penetrate the pores. After the water is gone and dried, the
dispersant PVP remains with a large amount of silver nanoparticles (Figure 3). In this
study, when the laser irradiation was performed at a fluence extremely smaller than the
ablation threshold of the YSZ, only the surface PVP film was removed without machining
the YSZ surface.

PVP is one of the most commonly used materials for dispersion of metal nanoparticles.
Removal by combustion has been reported in many cases. For example, Taguchi et al. [40]
proposed a method to remove PVP from Pt nanocolloids by multiple washing with solvent
and combustion. In the case of this study, the removal of PVP was realized by the role of
laser irradiation as one of the methods for combustion.

Since metal nanoparticles enhance the combustion of PVP, the glass transition temper-
ature of PVP is about 180 ◦C, and the decomposition temperature is about 380 ◦C [41]. The
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melting point of bulk silver is about 960 ◦C [42], but the melting point of silver nanoparticles
may have changed due to nanoparticulation. Feng et al. [43] reported that the melting
point of single nanoparticles or nanoparticle clusters significantly decreased compared to
the bulk material due to the size effect. Therefore, it is assumed that the melting point of
silver nanoparticles used in this study is also smaller than that of bulk silver.

In laser processing of polymer materials, ablation by laser pulses breaks down the
polymer into gases and removes it from the surface [44]. When metal nanoparticles
are included, the interfacial interaction between the particles and the polymer matrix
in contact with them promotes the heating and melting of the polymer, which changes
the ablation properties [45,46]. Therefore, it is considered that the polymer decomposi-
tion proceeds through a complex combination of photochemical and thermal reactions
acting simultaneously.

From the above, the phenomena on the sample surface during laser irradiation are
considered as follows. When irradiated by laser under appropriate conditions, silver
nanoparticles aggregate in PVP, which reaches the glass transition point, and melt to form
large clumps. Then, PVP decomposes and disperses into the atmosphere, leaving mainly
silver on the YSZ. Here, at any pulse width and laser fluence, the surface morphology did
not change when the scanning speed was greater than a certain value. This indicates that
PVP cannot be decomposed by single pulse irradiation but is gradually decomposed by
repeated irradiation at the same location.

When an ultrashort pulsed laser is used (Figure 16(b1)), the silver clumps remaining
on the YSZ surface are gradually ablated and removed due to multiple pulse irradiation.
However, small clumps deep within the elongated nanopores surrounded by zirconia,
which has a very low thermal conductivity compared to silver, are less affected by the laser
beam and remain within the pore as clumps.

When irradiated with a nanosecond pulsed laser with a large pulse width (Figure 16(b2)),
the entire dried dispersion film is heated, and its temperature increases. From the experi-
mental results, surfaces irradiated with nanoseconds were melted as shown in Figure 8.
Considering that the melting point of zirconia is about 2700 ◦C, both PVP and silver
nanoparticles (boiling point of bulk silver is about 2160 ◦C [47]) become vaporized and
leave the YSZ surface. Some vaporized silver cools down rapidly, and agglomerates in the
air become tiny nanoparticles, which are again deposited on the YSZ surface.

When heated in an electric furnace at 450 ◦C (Figure 16(b3)), a little higher than the
decomposition temperature of PVP, large clumps of silver nanoparticles adhered to the YSZ
surface. However, most of these clumps remained above the pores and did not penetrate
the pores. This heating temperature was suitable for the decomposition and removal of
PVP, but not for melting the silver and allowing it to flow onto the surface and into the
pore for implantation. Moreover, the heat applied to the sample at this temperature for a
considerably longer time than the laser irradiation caused a phase transformation of the
YSZ, resulting in a large increase in monoclinic phases. Thus, the ultrashort laser pulse is
considered to be suitable for removing only the surface layer of PVP and melting the silver
to be embedded in the pore.

Consider the difference in surface morphology depending on the laser irradiation
parameters. When the scanning speed is too large, the number of pulses is insufficient and
the PVP remains undecomposed. On the other hand, the smaller the scanning speed, the
more the laser is repeatedly irradiated to the surface with nanopores once the surface-dried
film is removed and the surface is bare. Then, the material remaining in the pore is easily
removed by direct interaction with the laser beam. Since the threshold of the number of
pulses that can decompose PVP changes with laser fluence, the suitable scanning speed also
changes accordingly. Furthermore, at very low laser fluence, the increase in overlap rate
is thought to promote the formation of LIPSS. At high fluence, the YSZ itself is processed,
where the surface area is increased by nanopore formation and the ablation threshold
becomes lower than the original YSZ, as shown in Figure 5.
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In addition to laser parameter control during PVP removal, there are other factors
to consider to obtain a more uniform silver-embedded surface. First, by applying the
nano-silver dispersion liquid evenly to YSZ to maintain a constant dried film thickness,
it is thought that the dried film will be removed evenly during laser irradiation, and
the adhesion of residual PVP debris can be suppressed. Furthermore, it is necessary to
process the nanopores with high density and uniformity. In this study, laser irradiation was
performed using a circular Gaussian beam, which creates gaps between pulses. Therefore,
it is considered effective to use, for example, a square laser beam with a flat-top energy
distribution, and a line beam laser. In this method, a commercially available nano-silver
dispersion was used. According to the above discussion, the dispersant PVP is thought to
be suitable for embedding silver nanoparticles in nanopores because it is water-soluble,
easily wets and spreads silver on the YSZ surface, and decomposes at a relatively low
temperature. Although silver nanoparticles of a few nanometers in diameter were used,
methods for generating particles of various sizes have been reported in recent years [48],
and changes in embedding phenomena with particle size also require investigation.

Based on the above results, the advantage of the silver embedding method proposed
in this study is summarized. Table 3 shows some of the methods for loading materials on
the material surface. There are several methods for loading silver nanoparticles, including
depositing silver using a chemical solution such as silver nitrate solution (Table 3 (a)),
irradiating a silver substrate with a laser and trapping the scattered nanoparticles in
suspension (Table 3 (b)), and having the nanoparticles deposited on the surface in a nano-
silver solution (Table 3 (c)). In these methods, the nanoparticles adhere to the entire treated
surface. In some cases, the particles do not penetrate the interior of the structure and are
not fixed. On the other hand, the method proposed in this study uses silver nanoparticles in
a commercially available nano-silver dispersion, and silver can be placed in targeted areas
by controlling the processing position of nanopores. The re-irradiation of the laser beam
also separates the PVP from the silver and removes excess material from the surface, so
the substrate surface is not covered with the embedded material. The silver nanoparticles
penetrate deep into the pores and form large clumps that can be anchored in the pores.
The amount of embedded silver can be controlled by the laser parameters. No special
equipment or chemicals are required, and thermal damage to the substrate during the
process can be suppressed. The effectiveness of laser patterning nanoarrays for material
fixation on fused silica surfaces was reported (Table 3 (d)). However, such a nanoarray
fabrication technique for YSZ has not yet been reported. In our study, a novel technique to
form a large number of nanopores on the YSZ surface at once using a femtosecond pulsed
laser was used to achieve the loading onto the surface nanostructures.

Table 3. Material loading methods.

Substrate Material Substrate Structure Embedding Material Embedding Method Ref.

(a) Cellulose nanofiber (CNF) Nanofiber Ag nanoparticle High-pressure wet-type jet mill [8]
(b) Graphene oxide (GO) Nanosheet Ag nanoparticle Laser ablation in GO suspension [7]
(c) Titanium Polished flat surface Ag nanoparticle Deposition in silver nanoparticle solution [49]
(d) Fused silica Nanopore arrays Peptide Adsorption [10]
(e) Yttria-stabilized zirconia (YSZ) Nanopores Ag nanoparticle Laser irradiation This study

4. Conclusions

Femtosecond pulsed laser irradiation was performed to embed silver nanoparticles in
nanopores on YSZ, and its fundamental characteristics were investigated. The conclusions
are summarized as follows.

(1) Silver nanoparticles were successfully embedded in nanopores generated by irradi-
ating a YSZ substrate with a femtosecond pulsed laser, by dropping a commercially
available nano-silver dispersion into the pores and re-irradiating the laser.

(2) By irradiating at the fluence in a limited range much lower than the ablation threshold,
the polyvinylpyrrolidone (PVP) polymer dispersant remaining on the outer surface
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of the nanopores was selectively decomposed and removed. On the other hand, in-
creasing the fluence at low scanning speeds caused delamination of the YSZ substrate
surface and the formation of laser-induced periodic surface structures. Laser fluence
and scanning speed interacted to embed silver in the pores while maintaining the
grain shape of the substrate surface. The best conditions in this study were laser flu-
ence of 0.6 J/cm2 and scanning speed of 200 mm/s, at which the silver implantation
rate reached about 60%.

(3) When the pulse width was increased, the substrate surface melted and a crack oc-
curred due to the thermal effect. At the same time, not only the PVP but also silver was
removed from both the surface and inside the pores, indicating that ultrashort pulses
are suitable for maintaining the substrate surface morphology and silver loading.

(4) The silver nanoparticles melted and agglomerated, forming large agglomerates inside
the nanopores by laser irradiation while separated from the dispersant PVP. The silver
was embedded to the bottom of the elongated pore, reaching a depth of approximately
600 nm from the surface.

(5) The thermally induced tetragonal–to–monoclinic phase transformation was sup-
pressed on the YSZ surface after embedding silver nanoparticles in the nanopore
by using low laser fluence under the ablation threshold, indicating no thermal dam-
age to the bulk.

This study demonstrated the new approach to the functionalization of YSZ surfaces
by implanting different materials in nanopores by the femtosecond pulsed laser process
without causing severe thermal damage to the bulk. This technique enabled the local
embedding of metal nanoparticles without causing significant thermal damage to the
bulk. The method can be expected to be a cost-effective system, as it can be completed
using only a low-power femtosecond pulsed laser system and requires a small amount of
commercially available silver nanoparticles. In addition to the surface features of zirconia,
such as biocompatibility, silver-loaded YSZ substrates are expected to have a synergistic
effect due to the sustained antimicrobial effect of silver fixed in the surface nanopores.
These findings not only deepen the scientific understanding of the ablation properties
of the different materials on the substrate, but also provide the potential to expand new
applications for zirconia by adding value through surface functionality such as antibacterial
properties, biocompatibility, and nanomedicine delivery. To further develop this study, it
is necessary to evaluate the long-term stability of silver embedded in nanopores and its
behavior under other environmental conditions and verify its functionality in the future.
In addition, optimization of unexplored laser parameters is required to improve the silver
embedding rate.
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