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Abstract: The rolling element bearing is a fundamental component of any rotating machinery. During
operation, wear debris and lubricant impurities create dents and bumps on the bearing raceway surfaces.
Such localized defects produce transient vibration impulses at one of the bearing characteristic frequen-
cies. Having a combination of multiple types of point defects on the raceway results in superimposed
vibration patterns, which reduce the ability to recognize these defects’ effects. In this paper, a 6-DOF
dynamic model is developed to accurately investigate the vibration characteristic of a ball bearing with
a multipoint defect comprising a dent and bump on its raceway surface. The model considers the effects
of time-varying contact force produced due to defects, lubricant film damping, bearing preload, and the
inertia effect of rolling elements. The simulation results reveal the vibration behavior of multipoint defect
bearings. In addition, bearing vibration response is affected by the number of defects, the angle between
them, and the type and size of each defect. Furthermore, it is challenging to predict bearing defects
parameters such as the numbers, types, sizes, and angles between adjacent defects from acceleration
signal analysis without jerk signal analysis. The validation of the model is proved using signals from the
Case Western University test setup.

Keywords: rolling element bearing; multiple localized defects; dent; bump; number of defects; angle
between defects; fault size; dynamic model; vibration response

1. Introduction

The rolling element bearing (REB) is an important mechanical element used to support
rotating machinery and prevent frictional contact between rotating and fixed parts. Unex-
pected failures of REBs cause major machinery malfunctions, breakdowns, and production
losses [1]. According to some statistics, REB problems represent 44% of induction motor
failures [2,3].

Defects in REBs are classified into localized and distributed bearing faults. Distributed
defects, such as waviness, surface roughness, or off-size rolling elements, are generally
caused by manufacturing errors. In contrast, insufficient lubrication film and rolling contact
fatigue are the prime initiators of localized defects [4]. Localized defects account for 30% of
rotating machine faults, according to an Electric Power Research Institute (EPRI) survey [5].
These faults usually originate from rolling contact fatigue in the surface or subsurface
cracks. During operation, rolling contact fatigue causes gradual propagation of these
cracks, which combine and cause material loss from the inner race, outer race, or rolling
elements, forming spalls or dents [5]. Other forms of localized defects, such as bumps in
bearing raceways, are normally generated by debris or grease impurities trapped between
the ball–raceway interface, which adheres to the surface [6].
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Once a localized defect is formed on the raceway, the rolling elements repeatedly
strike over it, at which a corresponding abrupt change in contact pressure occurs. These
fluctuations in contact pressure generate a sequence of short-time impulse bursts, causing
abnormal transient vibration impulses and exciting the high-frequency resonant modes of
the bearing structure [7]. Gradually, the edges of the localized pit/spall wear as the rolling
parts pass over it repeatedly, causing the formation of an extended fault [8].

Early fault detection and identification help reduce REB failure costs and consequences.
Vibration analysis provides critical information on rolling bearing health over time [9].
A bearing localized defect is identified in raw vibration signals in the time domain and
frequency domain by repeated transient impulses at one of the bearing characteristic
frequencies [10]. At early stages, the initiated faults have low energy levels and are
submerged in background noise and low-frequency signal components.

Over the past years, different approaches have exploited vibration data to detect and
diagnose REB faults at early stages. These approaches can be classified into model-based and
signal-processing-based methods [11]. Signal processing methods include spectral analysis
methods [12,13], time-frequency analysis methods [14,15], wavelet filtration [16–18], cyclosta-
tionary analysis [19–21], and empirical and variational mode decomposition methods [22–24].
Although signal processing techniques tackle a wide range of industrial problems, they are
data-driven methods. These techniques require, in many cases, an in-depth understanding
of the nonlinear dynamic behavior of rolling bearings, such as internal radial clearances [25],
and the effect of multipoint fault locations and sizes for more effective development of fault
diagnosis algorithms.

Dynamic modeling of REBs provides extensive information on bearing vibration
response and provides guidance for the manifestation of different fault geometries and
multifault combined effects in transient impulsive signals. This enhances the understanding
of the generated vibration in faulty bearings and their dynamic characteristics, which aids
in developing more accurate fault diagnosis algorithms and enhancing rolling bearing
design and lifetime prediction [26].

Gupta [27,28] was the first to develop and analyze 3D bearing motion. Ghaisas et al. [29]
simplified analytical models of contact forces and established a discrete element model. In
previous dynamic bearing simulations, all bearing components were modeled assuming
defect-free raceways and balls. Several REB dynamic models have been created over the
last several decades to anticipate the vibration response of bearings due to distributed
defects such as raceway waviness [30,31], off-sized rolling elements [32], raceway out-of-
roundness [33], and misalignment rotor ball bearing systems [34,35].

Dynamic models for rolling bearings having localized surface defects on the inner
raceway, the outer raceway, or the rolling elements have received extensive attention in
the past decade. The vibration response of localized defect rolling element bearing was
investigated using a rectangular displacement excitation model [36–39]. Using a half-sine
displacement excitation model, Patil et al. [40] established a theoretical model to develop
the vibration response of a ball bearing with a circumferential spall. Liu et al. [41] used a
piecewise excitation function to model a spall defect. On the other hand, Singh et al. [42]
proposed an explicit finite-element model to simulate the vibrations of a rolling element
bearing with a spall defect on its outer raceway surface.

Many research efforts in the literature have modeled defective rolling bearings consider-
ing spall defects, while little research has addressed dent and bump defects. Ashtekar et al. [6]
developed a dynamic model to investigate the effects of surface irregularities such as dents,
bumps, and debris on deep-groove ball bearing vibrations. This model applied Hertzian
contact theory and the superposition principle to calculate the contact force between rolling
elements and defective raceways. To investigate the influence of a raceway dent on tapered
roller bearing vibrations, Li and Kang [43] constructed a three-dimensional vibration model
of a bearing based on Hertzian contact theory and an electrohydrodynamic lubrication model
to simulate the nonlinear interactions between bearing components. Liu et al. [44] introduced
shoulders on the dent sides and studied their combined influence on ball bearing dynamics.
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Shi et al. [45] proposed a dynamic model to study the effect of hemisphere bump defects on
the vibration response of cylindrical roller bearings. A semi-sinusoid function was used to
model the excitation effect of a bump on the inner raceway.

While most previous works have focused on localized single defects in bearings, in
actual practice, multiple localized defects are common. Furthermore, point defects may not
necessarily lead to the immediate replacement of a bearing in machines until they progress
to form multiple localized faults on bearing raceway surfaces. The vibration response of
bearings with multiple localized defects is more difficult to interpret using conventional
dynamic models [46]. Early attempts by McFadden and Smith [47] formulated a dynamic
model to describe the vibration response of bearings with multiple rectangular defects and
analyzed the effect of the phase angle between defects on vibration response. This analysis
shows that varying phase angles lead to modifying the shape of the vibration spectrum, and
the largest amplitude of the vibration signal is not necessarily located at a faulty frequency.
In their significant work, Zhang et al. [48] proposed a 4-DOF dynamic model to study the
vibration response of deep-groove ball bearings with compound rectangular shape defects
under different operating conditions. Recently, a 4-DOF dynamic model of a ball bearing
with multiple defects was developed to study the influence of multiple rectangular spall
defects, the angle between defects, and the location of defects on the obtained vibration
response [49].

One limitation in previous studies is that they predicted the vibration response char-
acteristics induced by rectangular multiple defects. However, a rectangular shape is
impractical to occur, and it is believed that the edges and surfaces of a rectangle fault tend
to be deformed and rounded with the repetitive rolling action of bearing elements over
them. Furthermore, little effort has focused on modeling the combined effect of different
types of localized faults on the obtained transient impulses of faulty bearings. This pa-
per proposes an improved nonlinear dynamic model of a deep-groove ball bearing with
hemispherical-shaped dents and bumps rather than rectangular-shaped defects located
simultaneously on either the inner or the outer race surface. The dynamic model has
6-DOF that includes the bearing shaft’s and bearing housing’s flexibility and simulates
a typical high-frequency resonant response of the bearing. The time-varying compliance
and time-varying displacement produced due to defects are considered in the model. The
model also takes into consideration the oil film lubrication damping, the effect of bearing
preload, and the inertia effect of rolling elements. Additionally, this paper investigates
the influence of the angle between adjacent defects, the size of defects, and the number of
defects on the vibration response of the defective bearing.

2. Dynamic Modeling of the Ball Bearing

The multibody nonlinear dynamic model used to predict the vibration response of a
rolling element bearing with a bump and dent in each raceway is depicted in Figure 1. In
this model, rolling elements and bearing raceways are considered rigid. The slipping be-
tween the bearing components is not taken into account. Furthermore, contact deformations
between the rolling element and raceway are considered elastic, and any localized plastic
deformations are ignored. The proposed 6-DOF model includes the horizontal and vertical
displacements of the outer and inner races (xo, yo, xi, and yi) and the measured vibration
response (xr, and yr). The model consists of a mass mi, representing the inner raceway and
shaft, and a mass mo, representing the outer raceway and bearing support structure.
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Figure 1. (a) Schematic of loaded ball bearing with simulated ball deformation; (b) simplified model
of contact and damping force between ball and raceways; (c,d) schematic of contact relation between
ball and bump, and ball and dent.

The spring and damper constants (kix, kiy, kox, koy, cix, ciy, cox, and coy) represent the
stiffness and damping of the bearing shaft and support structure. Time-varying nonlinear
contact springs (Kj) are used to model the Hertzian contacts between rolling elements and
raceways. In addition, the damping of the lubricant layer in the contacts is modeled using
linear dampers (Cj). As demonstrated by previous studies [50,51], a 2-DOF unit resonator
was implemented to simulate a typical high-frequency resonant response of the bearing.
This resonator unit consists of two masses (mr) attached to the outer raceway via a spring
(kr) and damper (cr).

2.1. Defect Shape Modeling

The leading cause of bumps in REBs is the presence of debris between the rolling
element and the raceway. The debris may be lubricant impurities or induced by fatigue
spalling. The profile of bumps on the raceway is approximated as a hemisphere, as shown
in Figure 2a [6,45]. On the other hand, debris particles, brinelling, and surface spalls are the
leading causes of dents on bearing raceways. The basic geometry of a dent can be idealized
as a hemispheroidal shape, whose size is defined by diameter d and depth h, as shown in
Figure 2b [52,53].
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Figure 2. (a) Cross-section of bump defect, (b) cross-section of dent defect, (c) and top view of bump
and dent defect.

When a ball passes over a localized defect, the clearance of the bearing assembly
suddenly changes compared to the normal bearing case, as illustrated in Figure 1c,d.
This change will lead to a sudden variation in the contact deformation (displacement)
between the ball and the inner/outer raceways. The change of contact deformation (Hdik)
(displacement) can be expressed by a half sinusoid function, as described in Equation (1):

Hdjk(t) =

{
hsin

(
π

θdjk

(
mod

(
ϕj(t), 2π

)
− θdjk

))
, θdjk ≤ mod

(
ϕj, 2π

)
≤ θdjk + θdk

0 , Other
(1)
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where θdjk is the localized defect width in the angular domain, which can be calculated by
Equation (2) as follows:

θdjk = dk/Dd (2)

Dd is the raceway diameter with a defect. θdjk is the initial angular offset of defect k to
the jth ball. Φj is the relative angular position of the jth ball relative to the outer race or the
inner race, which can be determined using Equation (3):

ϕj(t) =
{

2π(j − 1)/z + ωct, f or outer race
2π(j − 1)/z + (ωs − ωc)t, f or inner race

(3)

where z is the number of rolling elements, ωs is the shaft angular velocity, ωc is the cage
angular velocity, and h is the maximum deformation change due to local defects. In the
case of a bump defect, the value of h will equal to the bump height, while in the case of a
dent defect, it can be calculated by Equation (4) as follows:

h =
db
2

−

√(
db
2

)2
−
(

d
2

)2
(4)

where db is ball diameter.

2.2. Time-Varying Contact Force

The contacts between the rolling elements and the raceways are modeled using a
series of nonlinear springs. The equivalent contact stiffness of the rolling element with the
inner and outer raceways is calculated by:

K =

(
1

(1/ki)
1/n + (1/ko)

1/n

)n

(5)

where n is the load–deflection exponent, which is equal to 3/2 for ball bearing [54]. ki
and ko represent the contact stiffness between the rolling element and the inner and outer
raceways, respectively, which are calculated by Equation (6) according to [8,54] as follows:

K i
o
= 2.15 × 105

(
∑ ρ bi

bo

)−1
2
(

δ∗ i
o

)−3
2 (6)

where ∑ ρ bi
bo

is the sum of the curvature of the rolling element and inner/outer raceway,
and δ∗ i

o
is the dimensionless contact parameter. The values of ∑ ρ bi

bo
and δ∗ i

o
are calculated

by the method described in [55].
The rolling elements only come into direct contact with the raceways when they are in

the loading zone. Otherwise, the rolling element and raceways are in a separate state. The
location of the jth ball in the loading zone is estimated using the Dirac function βj, which
can be described as:

β j(t) =
{

1, δj(t) ≤ 0
0, δj(t) > 0

(7)

where δj is the relative radial displacement between the jth ball and raceways. According to
Figure 1, the radial displacement at any rolling element angular position can be described as:

δj(t) = (xi(t)− xo(t))cosθi(t) + (yi(t)− yo (t))sinθj(t)− γ + ∆i + ∆o (8)

where γ is the bearing radial clearance, ∆I and ∆o are the inner race expansion deformation
and outer race compression deformation caused by interference fit, whose value depends
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on interference value [56], and θi is the angular position of the jth rolling element relative
to the y-axis, which is calculated by Equation (9) as follows:

θj(t) = 2π(j − 1)/z + ωct (9)

According to Hertzian contact theory, the normal contact force between the jth ball
and raceways for a healthy bearing is given by Equation (10) as follows:

Fj(t) = Kβi(t)δi(t)n (10)

where Fj is the normal contact force between the jth ball and raceways. When a surface
defect (bump or dent) exists in the bearing raceways, the contact pressure substantially
changes over the local defect area each time a rolling element passes over it [6,57]. Con-
sequently, the normal contact force between the rolling element and raceway varies, and
the amount of this variation for a bump defect is estimated using Equation (11) according
to [6] as follows:

Fdjk(t) = ± Kb/d Hdjk(t)
3/2 (11)

where Fdjk is the normal force over the k defect due passing of the jth ball over it, and Kb/d
is the equivalent local defect Hertzian stiffness, which can be calculated by considering
the bump or dent as hemisphere according to the methodology described in [58]. The
dent and bump defects have opposite effects on the contact pressure, i.e., the change in
normal contact force due to dent Fdjk is the inverse of the change in the force value due
to the bump [6] so that Fdjk has a positive sign for a bump defect and a negative one for a
dent defect. By considering the Hertzian contact force and centrifugal force (Fc) of rolling
elements [30], the restoring force of the x and y components is calculated by Equation (12).{

Fx (t)
Fy (t)

}
= ∑ z

i=1

(
Fj(t) + ∑ Nd

k=1Fdjk (t)− Fc

) {cosθi(t)
sinθi(t)

}
(12)

where the centrifugal force (Fc) of the rolling elements due to rotation about the bearing
axis is given by Equation (13) [54,59] as follows:

Fc = 2.06 × 10−9db
3ωc

2Dp (13)

2.3. Contact Damping force

The lubricant film that separates the rolling element from the raceway is the primary
source of contact damping. The lubricant is supposed to exhibit Newtonian behavior.
Hence, the contact damping force of the jth rolling element may be determined using
Equation (14):

Fdj(t) = Cj
.

δj(t) β j(t) (14)

where Cj is the viscous damping coefficient, and
.

δj(t) is the relative velocity between the
jth rolling element and raceways, and may be calculated by:

.
δj(t) =

( .
xi(t)−

.
xo(t)

)
cosθi(t) +

( .
yi(t)−

.
yo (t)

)
sinθj(t) (15)

The x and y components of the total damping force can be calculated by Equation (16)
as follows: {

Fdx (t)
Fdy (t)

}
=

z

∑
i=1

Fdj(t)
{

cosθi(t)
sinθi(t)

}
(16)

The value of the viscous damping coefficient is determined to ensure that the total
damping in the bearing system is in order of 0.25 − 2.5 × 10−5 times the linearized stiffness
of the bearing system [8].
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2.4. Dynamic Equations of Ball Bearing

Based on the bearing model shown in Figure 1, and according to Newton’s second law,
the dynamic equations of motion for the ball bearing inner race, outer race, and resonator
unit are described by: {

mi
..
xi + cix

.
xi + kixxi + Fx + Fdx = Qx

mi
..
yi + ciy

.
yi + kiyyi + Fy + Fdy = Qy

(17)

{
mo

..
xo + (cox + cr)

.
xo + (kox + kr)xo − cr

.
xr − krxr − Fx − Fdx = 0

mo
..
yo +

(
coy + cr

) .
yo + (koy + kr)yo − cr

.
yr − kryr − Fy − Fdy = 0 (18){

mr
..
xr + cr

( .
xr −

.
xo
)
+ kr(xr − xo) = 0

mr
..
yr + cr

( .
yr − yo

)
+ kr(yr − yo) = 0

(19)

where Qx and Qy are the horizontal and vertical components of the externally applied
radial load on the bearing. The dynamic bearing model consists of a system of nonlinear
second-order differential (Equations (17)–(19)). This dynamic model is parametrically
excited by a sudden change of Fx and Fy. The passing of rolling elements over the localized
defect will cause an abrupt change of relative displacement between the rolling element
and raceways and a change of contact stiffness, which leads to a change of contact force
between the jth rolling element and the raceway and, finally, a sudden change of Fx and Fy,
which cause impulsive excitation of the dynamic system.

The numerical solution of Equations (17)–(19) for the developed model is solved using
the fourth-order Runge–Kutta method with a constant time step. The solution procedure
flow chart is illustrated in Figure 3.
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A deep-groove ball bearing (6205-2RS JEM SKF) is used in this study, and its geometri-
cal specifications are listed in Table 1. The bearing shaft is selected to rotate at 1797 rpm
under zero external load in the simulation environment. Moreover, the simulation time
step is 6 µs, and the initial displacement of the inner race is 1 µm in the x- and y-directions,
while the initial velocity is 0 in the horizontal and the vertical direction [59].

Table 1. Geometrical specifications of 6205-2RS JEM SKF deep-groove bearing [60,61].

Parameter Value

Inner race diameter, Do 25 mm
Outer race diameter, Di 52 mm
Pitch diameter, Dp 39.0398
Ball diameter, db 7.94004
Number of balls, z 9
Contact angle, α 0◦

Radial clearance, γ 5.5 µm
Load–deflection factor, K 1.5779 × 1010.5 N/m1.5

3. Numerical Results
3.1. Simulation Results of Bearing with Double Dents

The results of the modeled bearing running with two identical dents located on its
outer raceway are obtained by solving Equations (17)–(19), as shown in Figures 4 and 5.
In the simulation model of the defective bearing, the phase angle between the two dents
is selected to be 15◦, the dent diameter is 0.17 mm, and the dent depth is 0.28 mm. The
location of the first dent is the intersection between the x-axis and the outer raceway at the
heavily loaded zone.
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When comparing the dynamic response of a healthy bearing and a defective one,
which are shown in Figures 4a and 5a, it is clear that the vibration signal exhibits periodic
transient impulses with remarkable amplitudes, depending on the size and shape of
faults. The normal bearing, on the other hand, shows transient periodic impulses due to
fluctuations of resultant dynamic force (Fx, Fy, Fdx, Fdy) [62]. The envelope spectrum of
healthy and defective bearings, which are shown in Figures 4b and 5d, respectively, reveals
that BPFO and its harmonics are dominant modulation components for both bearings.
Furthermore, the peak amplitude at BPFO frequency and its harmonics for the healthy
bearing is insignificant compared with peaks for the defective one.

The passing of rolling elements over Dents 1 and 2 generates 21 impulses during
a 0.1 s period, as shown in Figure 5b. The time delay indicates that Impulses 1 and 3 are
created due to the passing of rolling elements over Dent 1, whereas rolling elements passing
over Dent 2 generate Impulses 2 and 4. Furthermore, the duration between Impulses 1 and
3 and Impulses 2 and 4 is 9.3 ms, which is approximately equal to 1/BPFO, where BPFO is
the ball bass frequency on the outer race.

Igarashi et al. [63] developed a relationship to calculate the reciprocal of time delay
fτo between the two defects located on the outer raceway of the ball bearing, as shown in
Equation (20):

fτo =
ϕo

ϕ
BPFO and BPFO = Nb ∗

ωc

2π
(20)

where ϕo is the interval angle between rolling elements, and ϕ is the phase shift angle
between the two defects, which is equal to the remainder of the division of the angle
between the two defects by the interval angle between defects. When the angle between the
two defects is 15◦ and ϕo is 40◦, the corresponding ϕ is 15◦. Consequently, and according
to Equation (20), the reciprocal of time delay is 286.3 Hz. Accordingly, the time difference
between Impulses 1 and 2 is 3.5 ms (5/8 BPFO) and between Impulses 2 and 3 is 5.8 ms
(5/8 BPFO), which confirms the simulation results.

The passing of the rolling element over a defect generates two impulses, which are
due to the destressing and restressing of the rolling elements at the instants of entry and
exit from the fault. The defect size can be calculated using the time duration between entry
and exit impulses [7,64]. However, it is difficult for bearings with multiple faults to clearly
distinguish the entry and exit shocks using only the acceleration signal. Hence, a jerk
signal is determined to evaluate the width of the dents, as shown in Figure 5c. It is clear
from the time delay calculations that two jerk impulses are generated due to the passing
of the rolling element over each dent. The jerk impulses s1 and s3 are positive due to the
destressing action, while the restressing action generates negative jerk shocks s2 and s3.
The duration between shocks s1 and s2 and shocks s3 and s4 is 97 µs. Considering the cage
angular velocity and diameter of the outer raceway, the diameter of the dents is calculated
and found to be 0.17 mm.

In recent years, envelope analysis has emerged as a dominant methodology for detect-
ing faults in rolling element bearings. The envelope spectrum of the simulated acceleration
signal is obtained as shown in Figure 5d. It is clearly visible that the peaks correspond to
the frequency of the outer race fault (BPFO) and its harmonics, and the maximum peak
occurs at the second harmonics of BPFO, which verifies the accuracy of the proposed
bearing model.

Figure 6 shows the simulation results for the modeled bearing with two dents located
on its inner raceway by solving Equations (17)–(19) at a rotation speed of 1797 rpm. The
dent used in the bearing model has a 0.17 mm diameter and 0.28 mm depth. The angle
between the two dents is 15◦, and the first dent is positioned at 270◦ from the positive
x-axis. To increase the readability of the simulated acceleration signal shown in Figure 6a,
the simulated acceleration signal in a period between 0.34 s and 0.36 s is enlarged, as shown
in Figure 6b.
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Figure 6a,b shows that 33 impulses are generated during 0.1 s due to the interaction
between rolling elements and Dents 1 and 2. By observing the phase shift between impulses,
it can be deduced that Impulses 1 and 3 are created due to the interaction of rolling elements
with Dent 1, whereas rolling element interactions with Dent 2 generate Impulses 2 and 4.
The time interval between Impulses 1 and 3 and Impulses 2 and 4 is found to be 6.17 ms,
which is approximately equal to 1/BPFI, where BPFI is the ball bass frequency on the inner
race. According to Igarashi et al. [63], the reciprocal of time delay (fτi) between defects
for a rolling element bearing whose inner raceway has two defects can be calculated from
Equation (21).

fτo =
ϕo

ϕ
BPFI & BPFI = Nb ∗

(ωi − ωc)

2π
(21)

where ϕo is the interval angle between rolling elements, and ϕ is the phase shift angle
between two defects, which is equal to the remainder of the division of the angle between
two defects by the interval angle between defects. By applying Equation (21) to the current
case, the corresponding ϕ is found to be 15◦, and the reciprocal of time delay is 432.12 Hz.
Accordingly, the time difference between Impulses 1 and 2 is 2.31 ms (3/8 BPFI) and
between impulses 2 and 3 is 3.86 ms (5/8 BPFI), which confirms the results of the simulated
acceleration signal.

Figure 6c shows the simulated jerk signal of the bearing model with double dents
on its inner race. Destressing actions occur when the rolling element enters the first and
second dent, generating positive impulses s1 and s3. Meanwhile, negative impulses s2 and
s4 are generated due to restressing at the exit of the rolling element from both dents. The
time difference between Impulses s1 and s2 and between Impulses s3 and s4 is 98 µs. Based
on the inner race, cage angular velocity, and outer raceway diameter, the diameter of the
dents is calculated and found to be 0.17 mm.

In Figure 6d, we can see the simulated acceleration signal’s envelope spectrum. Peaks
in the vibration amplitude are observed at frequencies that agree with the theoretical
value of the inner race fault characteristics frequency (BPFI) and its harmonics. This result
further proves the soundness of the developed bearing model with inner raceway defects.
Furthermore, the maximum peaks are located at the second BPFI harmonics.

3.2. Simulation Results of Bearing with a Dent and Bump

The vibration response of the ball bearing model having two different defects on its
outer raceway is studied in the simulation environment by solving Equations (17)–(19). The
first defect is a bump with a 0.17 mm diameter and 0.1 µm depth, while the other defect is a
dent whose diameter and height are 0.17 mm, and 0 is Tom Bolton 27 mm, respectively. The
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phase angle between the two defects is 15◦, and the location of the dent is the intersection
between the raceway with a negative x-axis. The rotational speed is selected to be 1797 rpm.
The results of the simulation trials are shown in Figure 7.

Machines 2022, 10, x FOR PEER REVIEW 12 of 22 

defect is a dent whose diameter and height are 0.17 mm, and 0 is Tom Bolton 27 mm, 

respectively. The phase angle between the two defects is 15°, and the location of the dent 

is the intersection between the raceway with a negative x-axis. The rotational speed is 

Figure 7. (a) Simulated acceleration signal of bearing with double defects (dent and 

bump) on its outer race at 25°, (b) enlarged simulated acceleration signal between 0.34 s 

and 0.36 s, (c) simulated jerk signal in time domain, and (d) envelope spectrum of simu-

lated acceleration signal. 

Figure 7 (a) demonstrates that 21 impulses are generated from the interaction of roll-

ing elements with the dent and bump. The shapes of impulses in enlarged acceleration

signals shown in Figure 7 (b) depict that bump and dent generate Impulses 1 and 3 and

Impulses 2 and 4, respectively. Furthermore, the time delay between Impulses 1 and 3 and

Impulses 2 and 4 is equal to 1/BPFO (9.3 ms). In addition, the time delays between Im-

pulses 1 and 2 and between Impulses 2 and 3 are 3.5 ms (5/8BPFO) and 5.8 ms (5/8BPFO), 

respectively, which match Igarashi’s equation. This confirms the soundness of the bearing 

model in the case of multi-faults with different geometries and forms located on the outer 

race. 

Figure 7 (c) illustrates the simulated jerk signal of the bearing with dent and bump 

defects on its outer raceway. When the rolling element passes over the dent, two impulses 

s3 and s4 are generated from destressing and restressing actions. For the bump, Impulses 

s3 and s4 are induced during the passing of the rolling element over it. The time difference 

between Impulses s1 and s2 is found to be 97 µs, which is the same time difference between 

Impulses s3 and s4. Based on the cage angular velocity and the diameter of the outer race-

way, the dent and bump diameters are calculated and found equal to 0.17 mm. 

Figure 7 (d) shows the envelope spectrum analysis of the simulated acceleration sig-

nal, which is similar to that obtained from the acceleration signal of a bearing with double 

dents on its outer raceway. The peaks located at the frequencies match the theoretical 

value of BPFO and its harmonics, which further confirms the accuracy of the bearing 

model results.

Figure 8 shows the simulation results of the bearing model with successive bump 

and dent defects on its inner raceway by solving Equations (17)–(19) at a rotation speed 

of 1797 rpm. The bump used in the simulation has a 0.17 mm diameter and 0.1 µm height, 

while the dent has a 0.17 mm diameter and 0.28 mm depth. The angle between the two 

modeled defects is 15°, and the bump is positioned at 270° from the positive x-axis. To 

increase the visibility of the simulated acceleration signal shown in Figure 8 (a), the sim-

ulated acceleration signal in a period between 0.34 s and 0.36 s is demonstrated in Figure

8 (b). 

Figure 7. (a) Simulated acceleration signal of bearing with double defects (dent and bump) on its
outer race at 25◦, (b) enlarged simulated acceleration signal between 0.34 s and 0.36 s, (c) simulated
jerk signal in time domain, and (d) envelope spectrum of simulated acceleration signal.

Figure 7a demonstrates that 21 impulses are generated from the interaction of rolling
elements with the dent and bump. The shapes of impulses in enlarged acceleration signals
shown in Figure 7b depict that bump and dent generate Impulses 1 and 3 and Impulses 2
and 4, respectively. Furthermore, the time delay between Impulses 1 and 3 and Impulses 2
and 4 is equal to 1/BPFO (9.3 ms). In addition, the time delays between Impulses 1 and 2
and between Impulses 2 and 3 are 3.5 ms (5/8BPFO) and 5.8 ms (5/8BPFO), respectively,
which match Igarashi’s equation. This confirms the soundness of the bearing model in the
case of multi-faults with different geometries and forms located on the outer race.

Figure 7c illustrates the simulated jerk signal of the bearing with dent and bump
defects on its outer raceway. When the rolling element passes over the dent, two impulses
s3 and s4 are generated from destressing and restressing actions. For the bump, Impulses
s3 and s4 are induced during the passing of the rolling element over it. The time difference
between Impulses s1 and s2 is found to be 97 µs, which is the same time difference between
Impulses s3 and s4. Based on the cage angular velocity and the diameter of the outer
raceway, the dent and bump diameters are calculated and found equal to 0.17 mm.

Figure 7d shows the envelope spectrum analysis of the simulated acceleration signal,
which is similar to that obtained from the acceleration signal of a bearing with double dents
on its outer raceway. The peaks located at the frequencies match the theoretical value of
BPFO and its harmonics, which further confirms the accuracy of the bearing model results.

Figure 8 shows the simulation results of the bearing model with successive bump
and dent defects on its inner raceway by solving Equations (17)–(19) at a rotation speed
of 1797 rpm. The bump used in the simulation has a 0.17 mm diameter and 0.1 µm height,
while the dent has a 0.17 mm diameter and 0.28 mm depth. The angle between the two
modeled defects is 15◦, and the bump is positioned at 270◦ from the positive x-axis. To
increase the visibility of the simulated acceleration signal shown in Figure 8a, the simulated
acceleration signal in a period between 0.34 s and 0.36 s is demonstrated in Figure 8b.
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When the rolling elements pass over the bump and dent, they generate 32 impulses
during a 0.1 ms period, as shown in Figure 8a. The generated bearing signal in the time
domain shown in Figure 8b indicates that Impulses 1 and 3 are created due to the passing
of rolling elements over the bump, whereas rolling elements passing over the dent generate
Impulses 2 and 4. Furthermore, the duration between Impulses 1 and 3 and Impulses 2
and 4 is around 6.17 ms, which is equal to 1/BPFI. Furthermore, the time delay between
Impulses 1 and 2 and Impulses 2 and 3 is 2.32 ms (5/8BPFI) and 3.85 ms (3/8BPFI),
respectively. These values are consistent with those calculated from Equation (21).

Figure 8c illustrates the simulation jerk signal of a bearing with a bump and dent on
its inner race. As the ball passes over the bump negative impulse s1 generates first due
to stressing followed by a positive impulse s2, which results from destressing. As the ball
passes over the dent, destressing followed by restressing generates a positive impulse s3
and a negative impulse s4, respectively. The time difference between Impulses s1 and s2
and between Impulses s3 and s4 is 98 µs. Based on the inner race, the cage angular velocity,
and the outer raceway diameter, the diameter of the bump and dent is 0.17 mm.

The envelope spectrum of the simulated acceleration signal is given in Figure 8d. The
vibration peaks occur at frequencies that match the theoretical inner race fault characteristics
frequency (BPFI) and its harmonics. In addition, the frequency at which the maximum
peak locate is coincident with the second BPFI harmonics.

During the actual operation of the rolling element bearing, multiple defects may arise
at different sizes and phase angles on the inner or outer raceway. In the case of small phase
angles, this may affect the interpretation of faults of a measured bearing signal. In addition,
the number of dents and bumps is an influential parameter to consider while analyzing
the measured vibration signal to properly detect and identify faults and their locations on
rolling bearings. The following sections address the influence of each parameter on the
obtained vibration response of the bearing model.

3.3. Effect of Phase Angle between Defects

A ball bearing model with bump and dent defects on its outer raceway is considered
for studying the effect of changing the angle between defects on the vibration response of
the bearing. The bump has a diameter of 0.17 mm and height of 0.1 µm, while the dent has
a 0.17 mm diameter and 0.27 mm depth. The bump location is the intercept between the
x-axis and outer raceway at the heavily loaded zone. The angle values between the two
defects are varied from 0.415◦ to 34.8◦ (radial distance from d to 84 d). The bearing model
is made to run at 1797 rpm. The simulation results are given in Figure 9.
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3.4. Effect of Defect Size 

Figure 9. Dynamic response (acceleration and jerk) of a bearing has a bump and dent on its outer
race with different angles between them: (a,b) 0.415◦ (radial distance d), (c,d) 3.139◦ (radial distance
8 d), and (e,f) 34.8◦ (radial distance 84 d).

In Figure 9a,b, the two transient impulses generated during the passing of the rolling
bearing over the two defects are merged due to the small value of the angle between defects
(0.415◦). Hence, it is difficult to identify the presence of double defects by relying only on
the interpretation of the acceleration signal. By differentiation, jerk-induced vibrations due
to the entrance and exit event of the bump and dent are clearly noticed. Therefore, it is
necessary to use a jerk signal for recognizing the occurrence of double defects, especially
when the angle between defects is small.

Figure 10a indicates the relationship of the time interval between the ending and
beginning of destressing impulses t1–2 measured from the jerk signal and the angle between
the two defects. It can be seen that t1–2 increases linearly with the increasing angle between
defects, and this is for an angle less than the angle between two adjustment balls. Therefore,
the angle between the two defects β can be calculated from Equation (22) as follows:

β = t1−2 ∗ fb f o ∗ ϕo (22)
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3.4. Effect of Defect Size 

Figure 10. (a) Relationship between time interval t1–2 and angle between defects β, and (b) relation-
ship between peak amplitudes at BPFO and angle between defects β.

The relationship between the peak amplitudes of the acceleration signal at the second
BPFO harmonics and the angle between the two defects is shown in Figure 10b. Equa-
tion (23), derived by nonlinear regression, describes the mathematical relationship between
the second BPFO harmonic peak amplitudes (Abfo) and the angle between the bump and
dent, which provides a guide to evaluating the angle between defects.

Ab f o = 0.395 + 0.249 cos (2πβ/ϕo) + 0.029 ∗ sin(2πβ/ϕo) (23)
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3.4. Effect of Defect Size

A ball bearing model with bump and dent defects on its outer raceway is considered
for studying the effect of changing the defect diameters on the vibration response of the
bearing. The bump has a height of 0.1 µm, while the dent has a 0.27 mm depth. The bump
location is the intercept between the x-axis and outer raceway at the heavily loaded zone,
and the angle between defects is 15◦. The defect diameter values vary from 0.17 mm to
2.5 mm. The bearing model is made to run at 1797 rpm. The simulation results are given in
Figure 11.
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Figure 11. Dynamic response (acceleration and jerk) of a bearing has a bump and dent on its outer
race with different widths (a) acceleration signals, and (b) jerk signals for 0.34 mm defect diameter;
(c) acceleration signal and (d) jerk signal for 2.5 mm.

Figure 11a,b depicts that the increase in defect width leads to an increase in acceleration
and jerk amplitude. Figure 11c,d illustrates that as the defect width increases, the time
difference between the entering impulse jerk and the exiting impulse jerk increases, which
can be used as an indication of the defect width.

Figure 12a indicates the relationship between acceleration RMS values and defect
width. It is visible that the RMS increases logarithmically as the defect width increases. The
relationship between the maximum peak amplitude at the second BPFO harmonics of the
envelope spectrum of the acceleration signal of the defective bearing is shown in Figure 12.
It is visible that the peak amplitude is increased logarithmically with an increase in the
defect width. Equation (24), derived by nonlinear regression, describes the mathematical
relationship between the second BPFO harmonic peak amplitudes (Abfo) and the defect
width, which provides a guide to evaluating the defect width.

Ab f o = 3.18143 ln d + 7.0161 (24)
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3.5. Effect of Number of Defects

To investigate the effect of het number of defects on the bearing vibration character-
istics, the simulated results for a bearing with multiple bumps and dents (four, six, and
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eight defects) in repeated sequence on its outer raceway are obtained by solving dynamic
Equations (17)–(19) at a rotation speed of 1797 rpm. In this simulation, all defects have a
0.17 mm diameter, while the depth of the dent is 0.28 mm, and the height of the bump is
0.1 µm. The phase angle between every two defects is 5◦; the location of the first defect is a
bump, and it is selected to be coincident with the negative x-axis. The simulation results
are shown in Figure 13.
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Figure 13. Dynamic response (acceleration and jerk) of a bearing has multiple bumps and dents on its
outer race with 5◦ angle between every two defects: (a,b) 4 defects, (c,d) 6 defects, and (e,f) 8 defects.

From Figure 13, if the angle between every two defects is large enough to prevent the
merging of impulses, and given that the angle between the first defect and the last one is
smaller than the interval angle between rolling elements, then the passing of the rolling
bearing over the defects generates a number of acceleration impulses equal to the number
of defects. Due to the difficulty to recognize each impulse and identify its number, and
the time interval between each impulse, it is necessary to use jerk signals. As clear from
the jerk signals, the number of stressing and destressing shocks during the time interval
between the two consecutive rolling elements is equal to double the number of defects,
and it is easy from the sign of every two repeated shocks to determine each defect type. In
addition, it is visible that the time interval between the two consequences of destressing or
stressing shocks is constant, and this is due to the constant angle between each.

Due to the random nature of the debris particle size and motion, it may cause in
some cases a randomly sized bump and dent located arbitrarily on a small area of the
bearing raceways. Figure 14 represents the dynamic response of a ball bearing with seven
randomly distributed dent and bump defects on its outer race surface. These defects have
different diameters and depths/heights. In addition, the angles between each adjacent
defect randomly vary. From acceleration signals and its envelope spectrum, it is easy to
conclude that the bearing is defective on its outer race. However, it is difficult to determine
the number of defects and the angle between them, as well as the type and diameter of
each defect, without analysis of the bearing jerk signal.
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4. Experimental Validation

The verification of the proposed ball bearing dynamic model is conducted using
defective bearing test data provided by the Bearings Data Center at Case Western Reserve
University (CWRU) [65] using the test rig shown in Figure 15. A 2 hp electric motor is used
to drive a shaft on which torque is applied via a load motor. Individual localized faults are
generated at the surfaces of the inner raceway, outer raceway, and balls of motor bearings
via electrical discharge machining (EDM). Vibration acceleration data are measured at
locations near to and far off the motor bearings at a 12 kHz sampling frequency. The results
of vibration characteristics for each faulty bearing with different fault sizes and locations
are used as a benchmark. Hence, comparisons between the advanced fault identification
methods can be easily held.
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Figure 15. Test rig of Bearings Data Center at Case Western Reserve University [65]. Figure 15. Test rig of Bearings Data Center at Case Western Reserve University [65].

In this study, the vibration data obtained from a bearing defect in the motor drive
end bearing in the two different cases are used in the proposed model validation. In the
first case, the defect is located at the bearing outer raceway, while the second case has the
defect located in the inner race. The bearing defect in both cases has a 0.007-inch (0.17 mm)
diameter and 0.011-inch (0.28 mm) depth and is located at the heavily loaded zone. The
bearing is a 6205-2RS JEM SKF deep-groove ball bearing. The operating condition of the
bearing is that the motor is running at approximately 1797 rpm under zero motor load. The
vertical vibration data at the motor driving end were collected at sampling frequencies of
12 kHz. The experimental vertical acceleration signal and simulated acceleration signal for
the two cases are depicted in Figure 16.
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Figure 16. (a) Acceleration signal of experimental results of single defect on outer race, (b) acceleration
signal of experimental results of single defect on inner raceway, (c) envelope spectrum of acceleration
signal of experimental results of single defect on outer race, and (d) envelope spectrum of acceleration
signal of experimental results of single defect on inner race.

Experimental acceleration signals of ball bearings have a defect on the outer raceway
in one case and the inner raceway in other cases, as shown in Figure 16a,b. It is clear that
periodic impulses occur due to the passing of rolling elements above a dent in the two
cases. In addition, the average time delay between two consecutive impulses is 9.3 ms
when the dent is located in the outer raceway. However, 69 ms is the average time delay
between the acceleration signals of the bearing that has a dent in the inner raceway. In
addition, Figure 16c,d indicates the envelope spectrum of experimental signals in both
cases. It is obvious that the peak amplitudes occur at ball bass frequency on the outer
race, which equals 107.9 HZ, and it is harmonic when the dent is located in the outer
raceway. Meanwhile, in the case of the dent located in the inner raceways, the highest peak
amplitude occurs at 162 Hz, which is equal to the ball bass frequency on the inner race. In
addition, the other beaks occur at the harmonics.

Figure 17a,b demonstrates the simulation results of the ball bearing model in two cases:
one with a dent on the outer raceway, and the other with a dent on the inner raceway. The
time delay between impulses in the signals of the two cases is 92 ms and 62 ms, respectively.
The envelope spectra of simulated acceleration signals of the two model cases are shown
in Figure 17c,d. When the dent is located in the outer raceway, the peak amplitudes are
clearly at the ball bass frequency of 108 HZ, and this is harmonic. However, the maximum
peak amplitude of the dent in the inner raceways occurs at 161.9 Hz. The other beaks can
be found in the harmonics of this one. These show that the simulated results are the same
as the experimental ones, which validates the proposed dynamic bearing model for a single
dent mode of fault.
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5. Conclusions

A nonlinear dynamic model of a deep-groove ball bearing was developed to inves-
tigate the effect of two different multipoint defects located on the same raceway on the
bearing vibration response. Contrary to most previous research, a dent and bump, with
hemispherical shapes, were selected to represent two common point defects generated by
mechanisms of adhesion of debris in contaminated lubricants and by spalling of subsurface
layers due to fatigue. This 6-DOF model considered the flexibility of bearing shaft and
house, the damping of lubricant film, the effect of bearing preload, the inertia effect of
rolling element, time-varying compliance, and time-varying displacement produced due to
defects. The effect of defect size, the angle between defects, and defect number on vibration
characteristics of bearing in the time domain and frequency domain were considered to
obtain a more accurate bearing fault detection method. The results of this study can be
summarized as follows:

• The vibration pattern of faulty bearings is greatly influenced by the defect type, defect
size, and angle between defects.

• The envelope spectrum analysis of the vibration acceleration signal showed that the
amplitude of BPFO second harmonic peaks decreases as the phase angle between
defects is increased until half interval angle between rolling elements, and then the
amplitude increases with the increase in angle. Furthermore, the vibration amplitude
of the BPFO second harmonics increases with the increase in defect size.

• It is challenging from the analysis of acceleration signals only to predict the number of
defects, the angle between each adjacent defect, the size of each defect, and the type of
each defect. This difficulty is due to interference of transient impulses produced from
sequential defects. To solve this difficulty, it is recommended to use jerk signal analysis.

• The model results for a single defect were verified using bearing test data provided by
CWRU in which the EDM process was used to induce localized faults on the raceway
with similar spherical geometries and diameters to the modeled faults.

• The developed model did not consider the effect of lubricant film stiffness, internal
clearance, slipping of rolling elements, or the combined effect of change of rotating
speed and radial load, which has an effect on bearing vibration response.

• Future work will focus on simulation and experimental work on bearing with multiple
defects, considering the combined influence of internal radial clearance and oil film
lubrication characteristics on the vibration response.
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